Комплексные числа для чайников
Содержание:
- Комплекснозначные функции действительного переменного.
- Math Solution
- Свойства операций.
- Решение системы линейных уравнений
- Аргумент комплексного числа
- Алгебраическая форма комплексного числа. Сложение, вычитание, умножение и деление комплексных чисел
- Изображение комплексных чисел радиус-векторами координатной плоскости
- Мир математики
- Извлечение корня.
Комплекснозначные функции действительного переменного.
Если каждому значению \(t\in \) поставлено в соответствие комплексное число \(z=z(t)\), то говорят, что на отрезке \(\) задана комплекснозначная функция действительного переменного.
Пусть \(\operatorname{Re}z(t) = x(t),\ \operatorname{Im}z(t) = y(t)\), тогда \(z(t) = x(t)+iy(t)\). Функцию \(z(t)\) можно рассматривать как вектор-функцию \(z(t)=(x(t),y(t))\). Определения предела, непрерывности, производной для комплекснозначной функции аналогичны соответствующим определениям для вектор-функции.
Например, производная функции \(z(t) = x(t) + iy(t)\) определяется формулой
$$
z'(t) = x'(t) + iy'(t).\label{ref25}
$$
Следовательно, производная \(z'(t)\) существует, если существуют производные \(x'(t)\) и \(y'(t)\).
Применяя формулу \eqref{ref25} к функции \(e^{it}=\cos t+i\sin t\), получаем \((e^{it})’=-\sin t+i\cos t=i^2\sin t + i\cos t = i(\cos t + i\sin t)\), то есть
$$
(e^{it})’=i e^{it}.\label{ref26}
$$
Таким образом, формула для производной комплексной функции \(e^{it}\) имеет такой же вид, как и для функции \(e^{\alpha t}\), где \(\alpha\in\mathbb{R}\).
Определим теперь показательную функцию \(\displaystyle e^{(\alpha+i\beta)t}\), где \(\alpha,\beta\) — заданные действительные числа, \(t\) — действительное переменное. Функция \(f(t) = e^t\), где \(t\in\mathbb{R}\), удовлетворяет условию
$$
f(t_1)f(t_2) = f(t_1+t_2).\label{ref27}
$$
Аналогично функция \(e^{i\beta t}\), где \(\beta\in\mathbb{R}\), обладает свойством \eqref{ref27} в силу первого из равенств \eqref{ref18}.
Поэтому функцию \(e^{(\alpha+i\beta)t}\) естественно определить так, чтобы для нее выполнялось условие \eqref{ref27}, то есть
$$
e^{(\alpha+i\beta)t}=e^{\alpha t}e^{i\beta t}.\nonumber
$$
Используя формулу \eqref{ref15}, отсюда находим
$$
e^{(\alpha+i\beta)t} = e^{\alpha t} (\cos \beta t+i\sin\beta t).\label{ref28}
$$
Применяя к функции \(e^{\lambda t}\), где \(\lambda=\alpha+i\beta\), правило дифференцирования \eqref{ref25}, легко показать, что
$$
(e^{\lambda t})=\lambda e^{\lambda t},\quad \lambda=\alpha+i\beta.\label{ref29}
$$
По аналогии с производной неопределенный интеграл от комплекснозначной функции \(z(t)=x(t)+iy(t)\) определяется формулой
$$
\int z(t) dt = \int x(t) dt + i\int y(t) dt.\nonumber
$$
Если комплексная функция \(\omega(t) = \xi(t) + i\eta (t)\) такова, что \(\omega'(t)=z(t)\), то
$$
\int z(t)=\int \omega'(t)dt=\int \xi'(t)dt+i\int \eta'(t)dt = \xi(t) + C_1 + i\eta(t)+iC_2.\nonumber
$$
Следовательно,
$$
\int z(t) dt = \omega(t) + C,\quad C = C_1+iC_2.\nonumber
$$
Применяя это утверждение к функции \(e^{(\alpha+i\beta)t}\) и используя формулу \eqref{ref29}, получаем
$$
\int e^{(\alpha+i\beta)t}=\displaystyle \frac{e^{(\alpha+i\beta)t}}{\alpha+i\beta}+C_1+iC_2.\label{ref30}
$$
Выделяя в равенстве \eqref{ref30} действительные и мнимые части, находим
$$
\int e^{\alpha t}\cos\beta t dt + i\int e^{\alpha t}\sin\beta t dt = \frac{\alpha-i\beta}{\alpha^2+\beta^2}e^{\alpha t}(\cos\beta t+i\sin\beta t)+C_1+C_2,\nonumber
$$
откуда получаем
$$
\int e^{\alpha t}\cos\beta t dt=\frac{e^{\alpha t}}{\alpha^2+\beta^2}(\alpha\cos\beta t+\beta\sin\beta t)+C_1,\label{ref31}
$$
$$
\int e^{\alpha t}\sin\beta t dt=\frac{e^{\alpha t}}{\alpha^2+\beta^2}(\alpha\sin\beta t-\beta\cos\beta t)+C_2,\label{ref32}
$$
Заметим, что формула \eqref{ref31} была получена с помощью в .
Math Solution
Функциональный и удобный сервис, позволяющий выполнять сразу четыре алгебраические операции: на сложение, вычитание, деление и умножение. Ознакомимся с основными рабочими этапами:
просмотрите правила ввода, кликнув на «+»;
- введите необходимые значения;
- посчитайте, для этого есть специальная кнопка с вычислением;
получите результат и подробное описание.
Этот ресурс станет настоящей находкой для старшеклассников. Легко заменит репетиторов и дорогие учебники. Подробное и понятное описание теории и принципов решения позволит быстро усвоить необходимый материал. Здесь вы не просто решаете задачи, используете онлайн калькулятор с подробным решением, но и можете легко понять, как это вычислялось.
Свойства операций.
Операции сложения и умножения комплексных чисел обладают свойствами:
-
коммутативности, то есть
$$
z_1+z_2=z_2+z_1,\qquad z_1z_2=z_2z_1;\nonumber
$$ -
ассоциативности, то есть
$$
(z_1+z_2)+z_3= z_1 + (z_2+z_3),\qquad (z_1z_2)z_3=z_1(z_2z_3);\nonumber
$$ -
дистрибутивности, то есть
$$
z_1(z_2 + z_3) = z_1z_2+z_1z_3.\nonumber
$$
Эти свойства вытекают из определения операций сложения и умножения комплексных чисел и свойств операций для вещественных чисел.
Из этих свойств следует, что сложение и умножение комплексных чисел можно выполнять по правилам действий с многочленами, заменяя \(i\) на \(-1\). Например, равенство \eqref{ref2} можно получить так:
$$
z_1z_2=(x_1+iy_1)(x_2+iy_2)=\\=x_1 x_2+i x_1 y_2+ix_2 y_1+i^2 y_1 y_2=x_1x_2-y_1y_2+i(x_1 y_2+x_2 y_1).\nonumber
$$
Множество комплексных чисел обозначают буквой \(\mathbb{C}\). Числа \(0= 0 + 0\cdot i\) и \(1 = 1 + 0\cdot i\) на множестве \(\mathbb{C}\) обладают такими же свойствами, какие они имеют на множестве \(\mathbb{R}\), а именно: для любого \(z \in \mathbb{C}\) справедливы равенства
$$
z+ 0 = z,\qquad z\cdot 1 = z.\nonumber
$$
На множестве \(\mathbb{C}\) вычитание вводится как операция, обратная сложению. Для любых комплексных чисел \(z_1=_1+iy_1\) и \(z_2 = x_2 + iy_2\) существует, и притом только одно, число \(z\) такое, что
$$
z+z_2=z_1.\label{ref7}
$$
Это число называют разностью чисел \(z_1\) и \(z_2\) и обозначают \(z_1-z_2\). В частности, разность \(0 -z\) обозначают \(-z\).
Из уравнения \eqref{ref7} в силу правила равенства и определения суммы комплексных чисел следует, что
$$
z_1-z_2=(x_1-x_2)+i(y_1-y_2).\nonumber
$$
Деление на множестве \(\mathbb{C}\) вводится как операция, обратная умножению, а частным от деления комплексного числа \(z_1=_1+iy_1\) на число \(z_2 = x_2 + iy_2\) называют такое число \(z\), которое удовлетворяет уравнению
$$
zz_2=z_1\label{ref8}
$$
и обозначается \(z_1:z_2\) или \(\displaystyle \frac{z_1}{z_2}\).
Докажем, что уравнение \eqref{ref8} для любых комплексных чисел \(z_1\) и \(z_2\), где \(z_2\neq 0\), имеет единственный корень.
\(\circ\) Умножая обе части уравнения \eqref{ref8} на \(\overline{z}_2\), получим в силу равенства \eqref{ref6} уравнение
$$
z|z_2|^2 = z_1\overline{z}_2,\label{ref9}
$$
которое равносильно уравнению \eqref{ref8}, так как \(\overline{z}_2\neq 0\).
Умножая обе части \eqref{ref9} на \(\displaystyle\frac{1}{|z_2|^2}\), получаем \(z=\displaystyle\frac{z_1\overline{z}_2}{|z_2|^2}\), то есть
$$
\frac{z_1}{z_2}=\frac{z_1\overline{z}_2}{|z_2|^2},\nonumber
$$
или
$$
\frac{z_1}{z_2}=\frac{x_1+iy_1}{x_2+iy_2}=\frac{(x_1+iy_1)(x_2-iy_2)}{x_2^2+y_2^2}=\frac{x_1x_2+y_1y_2}{x_2^2+y_2^2}+i\frac{x_2y_1-x_1y_2}{x_2^2+y_2^2}.\ \bullet\nonumber
$$
Эту формулу можно не запоминать — важно знать, что она получается умножением числителя и знаменателя на число, сопряженное со знаменателем. Пример 1
Пример 1.
Найти частное \(\displaystyle \frac{z_1}{z_2}\), если \(z_1=5-2i,\ z_2=3 + 4i\).
$$
\triangle\quad \frac{z_1}{z_2}=\frac{(5-2i)(3-4i)}{(3+4i)(3-4i)}=\frac{15-26i+8i^2}{25}=\frac7{25}-\frac{26}{25}i.\ \blacktriangle\nonumber
$$
Решение системы линейных уравнений
Наборы линейных уравнений довольно часто встречаются в повседневных расчетах, поэтому методов их решения придумано великое множество. Но перед рассмотрением самого простого алгоритма нахождения неизвестных стоит вспомнить о том, что вообще может иметь система таких уравнений:
— иметь только одно верное решение;
— иметь бесконечное множество корней;
— иметь несовместный тип (когда решений быть не может).
Метод Гаусса, используемый нашим АБАК-ботом — самое мощное и безотказное средство для поиска решения любой системы уравнений линейного типа.
Возвращаясь к терминам высшей математики, метод Гаусса можно сформулировать так: с помощью элементарных преобразований система уравнений должна быть приведена к равносильной системе треугольного типа (или т.н. ступенчатого типа), из которой постепенно, начиная с самого последнего уравнения, находятся оставшиеся переменные. При всем этом элементарные преобразования над системами — ровно то же самое, что и элементарные преобразования матриц в переложении для строк.
Наш бот умеет молниеносно выдавать решения системы линейных уравнений с неограниченным количеством переменных!
Практическое применение решение таких систем находит в электротехнике и геометрии: расчетах токов в сложных контурах и выведение уравнения прямой при пересечении трех плоскостей а также в множестве специализированных задач.
Данный сервис позволяет решать неограниченную по размерам систему линейных уравнений с комплексными коэффициентами.
Практическое применение:
Ну, раз бот умеет считать решения комплексных систем, то для него не составит труда считать частный случай, когда элементы системы являются вещественные числа.
Второе, в школе Вам это наверняка не понадобится, но вот в институте, особенно институтах связи, при расчетах токов в сложных контурах в электротехнике, наверняка пригодится.
Аргумент комплексного числа
Рассмотрим радиус–вектор произвольного, но отличного от нуля, комплексного числа z.
Аргументом комплексного числа z называют угол φ между положительным направлением вещественной оси и радиус-вектором z.
Аргумент комплексного числа z считают положительным, если поворот от положительного направления вещественной оси к радиус-вектору z происходит против часовой стрелки, и отрицательным — в случае поворота по часовой стрелке (см. рис.).
Считается, что комплексное число нуль аргумента не имеет.
Поскольку аргумент любого комплексного числа определяется с точностью до слагаемого 2kπ , где k — произвольное целое число, то вводится, главное значение аргумента, обозначаемое arg z и удовлетворяющее неравенствам:
Тогда оказывается справедливым равенство:
Если для комплексного числа z = x + i y нам известны его модуль r = | z | и его аргумент φ, то мы можем найти вещественную и мнимую части по формулам
(3) |
Если же комплексное число z = x + i y задано в алгебраической форме, т.е. нам известны числа x и y, то модуль этого числа, конечно же, определяется по формуле
(4) |
а аргумент определяется в соответствии со следующей Таблицей 1.
Для того, чтобы не загромождать запись, условимся, не оговаривая этого особо, символом k обозначать в Таблице 1 произвольное целое число.
Таблица 1. – Формулы для определения аргумента числа z = x + i y
Расположениечисла z | Знаки x и y | Главное значение аргумента | Аргумент | Примеры |
Положительная вещественнаяполуось |
x > 0 , y = 0 |
φ = 2kπ | ||
x > 0 , y > 0 |
||||
Положительнаямнимаяполуось |
x = 0 , y > 0 |
|||
x < 0 , y > 0 |
||||
Отрицательнаявещественнаяполуось |
x < 0 , y = 0 |
π | φ = π + 2kπ | |
x < 0 , y < 0 |
||||
Отрицательнаямнимаяполуось |
x = 0 , y < 0 |
|||
x > 0 , y < 0 |
Расположениечисла z | Положительнаявещественнаяполуось |
Знаки x и y |
x > 0 , y = 0 |
Главноезначениеаргумента | |
Аргумент | φ = 2kπ |
Примеры |
Расположениечисла z | |
Знаки x и y |
x > 0 , y > 0 |
Главноезначениеаргумента | |
Аргумент | |
Примеры |
Расположениечисла z | Положительнаямнимаяполуось |
Знаки x и y |
x = 0 , y > 0 |
Главноезначениеаргумента | |
Аргумент | |
Примеры |
Расположениечисла z | |
Знаки x и y |
x < 0 , y > 0 |
Главноезначениеаргумента | |
Аргумент | |
Примеры |
Расположениечисла z | Отрицательнаявещественнаяполуось |
Знаки x и y |
x < 0 , y = 0 |
Главноезначениеаргумента | π |
Аргумент | φ = π + 2kπ |
Примеры |
Расположениечисла z | |
Знаки x и y |
x < 0 , y < 0 |
Главноезначениеаргумента | |
Аргумент | |
Примеры |
Расположениечисла z | Отрицательнаямнимаяполуось |
Знаки x и y |
x = 0 , y < 0 |
Главноезначениеаргумента | |
Аргумент | |
Примеры |
Расположениечисла z | |
Знаки x и y |
x < 0 , y < 0 |
Главноезначениеаргумента | |
Аргумент | |
Примеры |
Расположение числа z : Положительная вещественная полуось Знаки x и y : x > 0 , y = 0 Главное значение аргумента: Аргумент: φ = 2kπ Примеры: |
Расположение числа z : Знаки x и y : x > 0 , y > 0 Главное значение аргумента: Аргумент: Примеры: |
Расположение числа z : Положительная мнимая полуось Знаки x и y : x = 0 , y > 0 Главное значение аргумента: Аргумент: Примеры: |
Расположение числа z : Знаки x и y : x < 0 , y > 0 Главное значение аргумента: Аргумент: Примеры: |
Расположение числа z : Отрицательная вещественная полуось Знаки x и y : x < 0 , y = 0 Главное значение аргумента: π Аргумент: φ = π + 2kπ Примеры: |
Расположение числа z : Знаки x и y : x < 0 , y < 0 Главное значение аргумента: Аргумент: Примеры: |
Расположение числа z : Отрицательная мнимая полуось Знаки x и y : x = 0 , y < 0 Главное значение аргумента: Аргумент: Примеры: |
Расположение числа z : Знаки x и y : x < 0 , y < 0 Главное значение аргумента: Аргумент: Примеры: |
Алгебраическая форма комплексного числа. Сложение, вычитание, умножение и деление комплексных чисел
С алгебраической формой комплексного числа мы уже познакомились, – это и есть алгебраическая форма комплексного числа. Почему речь зашла о форме? Дело в том, что существуют еще тригонометрическая и показательная форма комплексных чисел, о которых пойдет речь в следующем параграфе.
Действия с комплексными числами не представляют особых сложностей и мало чем отличаются от обычной алгебры.
Сложение комплексных чисел
Пример 1
Сложить два комплексных числа ,
Для того чтобы сложить два комплексных числа нужно сложить их действительные и мнимые части:
Просто, не правда ли? Действие настолько очевидно, что не нуждается в дополнительных комментариях.
Таким нехитрым способом можно найти сумму любого количества слагаемых: просуммировать действительные части и просуммировать мнимые части.
Для комплексных чисел справедливо правило первого класса: – от перестановки слагаемых сумма не меняется.
Вычитание комплексных чисел
Пример 2
Найти разности комплексных чисел и , если ,
Действие аналогично сложению, единственная особенность состоит в том, что вычитаемое нужно взять в скобки, а затем – стандартно раскрыть эти скобки со сменой знака:
Результат не должен смущать, у полученного числа две, а не три части. Просто действительная часть – составная: . Для наглядности ответ можно переписать так: .
Рассчитаем вторую разность:
Здесь действительная часть тоже составная:
Чтобы не было какой-то недосказанности, приведу короткий пример с «нехорошей» мнимой частью: . Вот здесь без скобок уже не обойтись.
Умножение комплексных чисел
Настал момент познакомить вас со знаменитым равенством:
Пример 3
Найти произведение комплексных чисел ,
Очевидно, что произведение следует записать так:
Что напрашивается? Напрашивается раскрыть скобки по правилу умножения многочленов. Так и нужно сделать! Все алгебраические действия вам знакомы, главное, помнить, что и быть внимательным.
Повторим, omg, школьное правило умножения многочленов: Чтобы умножить многочлен на многочлен нужно каждый член одного многочлена умножить на каждый член другого многочлена.
Я распишу подробно:
Надеюсь, всем было понятно, что
Внимание, и еще раз внимание, чаще всего ошибку допускают в знаках. Как и сумма, произведение комплексных чисел перестановочно, то есть справедливо равенство:
Как и сумма, произведение комплексных чисел перестановочно, то есть справедливо равенство: .
В учебной литературе и на просторах Сети легко найти специальную формулу для вычисления произведения комплексных чисел. Если хотите, пользуйтесь, но мне кажется, что подход с умножением многочленов универсальнее и понятнее. Формулу приводить не буду, считаю, что в данном случае – это забивание головы опилками.
Деление комплексных чисел
Пример 4
Даны комплексные числа , . Найти частное .
Составим частное:
Деление чисел осуществляется методом умножения знаменателя и числителя на сопряженное знаменателю выражение.
Вспоминаем бородатую формулу и смотрим на наш знаменатель: . В знаменателе уже есть , поэтому сопряженным выражением в данном случае является , то есть
Согласно правилу, знаменатель нужно умножить на , и, чтобы ничего не изменилось, домножить числитель на то же самое число :
Далее в числителе нужно раскрыть скобки (перемножить два числа по правилу, рассмотренному в предыдущем пункте). А в знаменателе воспользоваться формулой (помним, что и не путаемся в знаках!!!).
Распишу подробно:
Пример я подобрал «хороший», если взять два числа «от балды», то в результате деления почти всегда получатся дроби, что-нибудь вроде .
В ряде случаев перед делением дробь целесообразно упростить, например, рассмотрим частное чисел: . Перед делением избавляемся от лишних минусов: в числителе и в знаменателе выносим минусы за скобки и сокращаем эти минусы: . Для любителей порешать приведу правильный ответ:
Редко, но встречается такое задание:
Пример 5
Дано комплексное число . Записать данное число в алгебраической форме (т.е. в форме ).
Приём тот же самый – умножаем знаменатель и числитель на сопряженное знаменателю выражение. Снова смотрим на формулу . В знаменателе уже есть , поэтому знаменатель и числитель нужно домножить на сопряженное выражение , то есть на :
Пример 6
Даны два комплексных числа , . Найти их сумму, разность, произведение и частное.
Это пример для самостоятельного решения. Полное решение и ответ в конце урока.
На практике запросто могут предложить навороченный пример, где нужно выполнить много действий с комплексными числами. Никакой паники: будьте внимательны, соблюдайте правила алгебры, обычный алгебраический порядок действий, и помните, что
Изображение комплексных чисел радиус-векторами координатной плоскости
Рассмотрим плоскость с заданной на ней Oxy и напомним, что радиус-вектором на плоскости называют вектор, начало которого совпадает с началом системы координат.
Назовем рассматриваемую плоскость комплексной плоскостью, и будем представлять комплексное число z = x + i y радиус–вектором с координатами (x , y).
Назовем ось абсцисс Ox вещественной осью, а ось ординат Oy – мнимой осью.
При таком представлении комплексных чисел сумме комплексных чисел соответствует сумма радиус-векторов, а произведению комплексного числа на вещественное число соответствует произведение радиус–вектора на это число.
Мир математики
Достойный внимания сайт, предоставляющий после полученного ответа подробные пояснения. Работать с ним также очень легко:
вводите условия в соответствующие поля;
- выбираете нужное действие;
- после нажатия на выбранную операцию будет начато вычисление и выдан результат.
Здесь вы найдете при необходимости подробную инструкцию для работы, так что точно не запутаетесь. Доступны разные варианты вычислительных сервисов, к примеру, матричный, инженерный и прочие.
Полезный контент:
- Формат heic, чем открыть, что это такое?
- Перевод с английского на русский с транскрипцией — лучшие онлайн сервисы
- Видеодрайвер перестал отвечать и был восстановлен — что за ошибка?
- Запись видео с экрана компьютера — какие программы в этом помогут?
- Караоке онлайн петь бесплатно с баллами — какие сервисы в этом помогут
Извлечение корня.
Рассмотрим уравнение
$$
z^n=a,\label{ref22}
$$
где \(a\neq 0\) — комплексное число, \(n\) — натуральное число.
Если \(z=re^{i\varphi}, \ a=\rho e^{i\theta}\), то уравнение \eqref{ref22} примет вид
$$
r^n e^{in\varphi}=\rho e^{i\theta},\nonumber
$$
откуда
$$
r^n=\rho,\quad n\varphi=\theta+2k\pi,\quad k\in\mathbb{Z},\nonumber
$$
и поэтому
$$
r=\sqrt{\rho},\qquad \varphi_k=\frac{1}{n}(\theta+2k\pi),\quad k\in \mathbb{Z},\label{ref23}
$$
то есть числа
$$
z_k=\sqrt{\rho}e^{i\varphi_k}\label{ref24}
$$
являются корнями уравнения \eqref{ref22} и других корней это уравнение не имеет.
Заметим, что числа \(z_0,\ z_1,\ …,\ z_{n-1}\) различны, так как их аргументы \(\displaystyle\varphi_0=\frac{\theta}{n},\ \varphi_1=\frac{\theta}{n}+\frac{2\pi}{n},\ …,\ \varphi_{n-1}=\frac{\theta}{n}+\frac{2\pi(n-1)}{n}\) различны и отличаются друг от друга меньше, чем на \(2\pi\). Далее, \(z_n = z_0\), так как \(|z_n| = |z_0|=\displaystyle\sqrt{\rho}\) и \(\varphi_n=\varphi_0+2\pi\). Аналогично, \(z_{n+1} = z_1,\ z_{-1} = z_{n-1}\) и т. д.
Итак, при \(a\neq 0\) уравнение \eqref{ref22} имеет ровно \(n\) различных корней, определяемых формулами \eqref{ref23} и \eqref{ref24}, где \(k=0,1,…,n-1\).
На комплексной плоскости точки \(z_k\ (k=\overline{0,n-1})\) располагаются в вершинах правильного \(n\)-угольника, вписанного в окружность радиуса \(\displaystyle \sqrt{\rho}\) с центром в точке 0.
Пример 5.
Найти все корни уравнения \(z^4 = 1 + i\).
\(\triangle\) Корни \(z_k\ (k = \overline{0,3})\) этого уравнения определяются формулами \eqref{ref23} и \eqref{ref24}, где \(\displaystyle \rho=|1 + i| =\sqrt{2},\ \theta=\frac{\pi}{4}\), то есть
$$
z_k=\sqrt{2}e^{i\varphi_k},\nonumber
$$
где
$$
\varphi_k=\frac{\pi}{16}+\frac{\pi k}{2},\quad k=0,1,2,3.\nonumber
$$
Рис. 31.6
Точки \(z_k\) располагаются в вершинах квадрата (рис. 31.6). \(\blacktriangle\)