Комплексные числа для чайников

Комплекснозначные функции действительного переменного.

Если каждому значению \(t\in \) поставлено в соответствие комплексное число \(z=z(t)\), то говорят, что на отрезке \(\) задана комплекснозначная функция действительного переменного.

Пусть \(\operatorname{Re}z(t) = x(t),\ \operatorname{Im}z(t) = y(t)\), тогда \(z(t) = x(t)+iy(t)\). Функцию \(z(t)\) можно рассматривать как вектор-функцию \(z(t)=(x(t),y(t))\). Определения предела, непрерывности, производной для комплекснозначной функции аналогичны соответствующим определениям для вектор-функции.

Например, производная функции \(z(t) = x(t) + iy(t)\) определяется формулой
$$
z'(t) = x'(t) + iy'(t).\label{ref25}
$$
Следовательно, производная \(z'(t)\) существует, если существуют производные \(x'(t)\) и \(y'(t)\).

Применяя формулу \eqref{ref25} к функции \(e^{it}=\cos t+i\sin t\), получаем \((e^{it})’=-\sin t+i\cos t=i^2\sin t + i\cos t = i(\cos t + i\sin t)\), то есть
$$
(e^{it})’=i e^{it}.\label{ref26}
$$

Таким образом, формула для производной комплексной функции \(e^{it}\) имеет такой же вид, как и для функции \(e^{\alpha t}\), где \(\alpha\in\mathbb{R}\).

Определим теперь показательную функцию \(\displaystyle e^{(\alpha+i\beta)t}\), где \(\alpha,\beta\) — заданные действительные числа, \(t\) — действительное переменное. Функция \(f(t) = e^t\), где \(t\in\mathbb{R}\), удовлетворяет условию
$$
f(t_1)f(t_2) = f(t_1+t_2).\label{ref27}
$$

Аналогично функция \(e^{i\beta t}\), где \(\beta\in\mathbb{R}\), обладает свойством \eqref{ref27} в силу первого из равенств \eqref{ref18}.

Поэтому функцию    \(e^{(\alpha+i\beta)t}\) естественно определить так, чтобы для нее выполнялось условие \eqref{ref27}, то есть
$$
e^{(\alpha+i\beta)t}=e^{\alpha t}e^{i\beta t}.\nonumber
$$

Используя формулу \eqref{ref15}, отсюда находим
$$
e^{(\alpha+i\beta)t} = e^{\alpha t} (\cos \beta t+i\sin\beta t).\label{ref28}
$$
Применяя к функции \(e^{\lambda t}\), где \(\lambda=\alpha+i\beta\), правило дифференцирования \eqref{ref25}, легко показать, что
$$
(e^{\lambda t})=\lambda e^{\lambda t},\quad \lambda=\alpha+i\beta.\label{ref29}
$$

По аналогии с производной неопределенный интеграл от комплекснозначной функции \(z(t)=x(t)+iy(t)\) определяется формулой
$$
\int z(t) dt = \int x(t) dt + i\int y(t) dt.\nonumber
$$

Если комплексная функция \(\omega(t) = \xi(t) + i\eta (t)\) такова, что \(\omega'(t)=z(t)\), то
$$
\int z(t)=\int \omega'(t)dt=\int \xi'(t)dt+i\int \eta'(t)dt = \xi(t) + C_1 + i\eta(t)+iC_2.\nonumber
$$
Следовательно,
$$
\int z(t) dt = \omega(t) + C,\quad C = C_1+iC_2.\nonumber
$$
Применяя это утверждение к функции \(e^{(\alpha+i\beta)t}\) и используя формулу \eqref{ref29}, получаем
$$
\int e^{(\alpha+i\beta)t}=\displaystyle \frac{e^{(\alpha+i\beta)t}}{\alpha+i\beta}+C_1+iC_2.\label{ref30}
$$

Выделяя в равенстве \eqref{ref30} действительные и мнимые части, находим
$$
\int e^{\alpha t}\cos\beta t dt + i\int e^{\alpha t}\sin\beta t dt = \frac{\alpha-i\beta}{\alpha^2+\beta^2}e^{\alpha t}(\cos\beta t+i\sin\beta t)+C_1+C_2,\nonumber
$$
откуда получаем
$$
\int e^{\alpha t}\cos\beta t dt=\frac{e^{\alpha t}}{\alpha^2+\beta^2}(\alpha\cos\beta t+\beta\sin\beta t)+C_1,\label{ref31}
$$
$$
\int e^{\alpha t}\sin\beta t dt=\frac{e^{\alpha t}}{\alpha^2+\beta^2}(\alpha\sin\beta t-\beta\cos\beta t)+C_2,\label{ref32}
$$

Заметим, что формула \eqref{ref31} была получена с помощью в .

Math Solution

Функциональный и удобный сервис, позволяющий выполнять сразу четыре  алгебраические операции: на сложение, вычитание, деление и умножение. Ознакомимся с основными рабочими этапами:

просмотрите правила ввода, кликнув на «+»;

  • введите необходимые значения;
  • посчитайте, для этого есть специальная кнопка с вычислением;

получите результат и подробное описание.

Этот ресурс станет настоящей находкой для старшеклассников. Легко заменит репетиторов и дорогие учебники. Подробное и понятное описание теории и принципов решения позволит быстро усвоить необходимый материал. Здесь вы не просто решаете задачи, используете онлайн калькулятор с подробным решением, но и можете легко понять, как это вычислялось.

Свойства операций.

Операции сложения и умножения комплексных чисел обладают свойствами:

  1. коммутативности, то есть
    $$
    z_1+z_2=z_2+z_1,\qquad z_1z_2=z_2z_1;\nonumber
    $$
  2. ассоциативности, то есть
    $$
    (z_1+z_2)+z_3= z_1 + (z_2+z_3),\qquad (z_1z_2)z_3=z_1(z_2z_3);\nonumber
    $$
  3. дистрибутивности, то есть
    $$
    z_1(z_2 + z_3) = z_1z_2+z_1z_3.\nonumber
    $$

Эти свойства вытекают из определения операций сложения и умножения комплексных чисел и свойств операций для вещественных чисел.

Из этих свойств следует, что сложение и умножение комплексных чисел можно выполнять по правилам действий с многочленами, заменяя \(i\) на \(-1\). Например, равенство \eqref{ref2} можно получить так:
$$
z_1z_2=(x_1+iy_1)(x_2+iy_2)=\\=x_1 x_2+i x_1 y_2+ix_2 y_1+i^2 y_1 y_2=x_1x_2-y_1y_2+i(x_1 y_2+x_2 y_1).\nonumber
$$
Множество комплексных чисел обозначают буквой \(\mathbb{C}\). Числа \(0= 0 + 0\cdot i\) и \(1 = 1 + 0\cdot i\) на множестве \(\mathbb{C}\) обладают такими же свойствами, какие они имеют на множестве \(\mathbb{R}\), а именно: для любого \(z \in \mathbb{C}\) справедливы равенства
$$
z+ 0 = z,\qquad z\cdot 1 = z.\nonumber
$$
На множестве \(\mathbb{C}\) вычитание вводится как операция, обратная сложению. Для любых комплексных чисел \(z_1=_1+iy_1\) и \(z_2 = x_2 + iy_2\) существует, и притом только одно, число \(z\) такое, что
$$
z+z_2=z_1.\label{ref7}
$$
Это число называют разностью чисел \(z_1\) и \(z_2\) и обозначают \(z_1-z_2\). В частности, разность \(0 -z\) обозначают \(-z\).

Из уравнения \eqref{ref7} в силу правила равенства и определения суммы комплексных чисел следует, что
$$
z_1-z_2=(x_1-x_2)+i(y_1-y_2).\nonumber
$$

Деление на множестве \(\mathbb{C}\) вводится как операция, обратная умножению, а частным от деления комплексного числа \(z_1=_1+iy_1\) на число \(z_2 = x_2 + iy_2\) называют такое число \(z\), которое удовлетворяет уравнению
$$
zz_2=z_1\label{ref8}
$$
и обозначается \(z_1:z_2\) или \(\displaystyle \frac{z_1}{z_2}\).

Докажем, что уравнение \eqref{ref8} для любых комплексных чисел \(z_1\) и \(z_2\), где \(z_2\neq 0\), имеет единственный корень.

\(\circ\) Умножая обе части уравнения \eqref{ref8} на \(\overline{z}_2\), получим в силу равенства \eqref{ref6} уравнение
$$
z|z_2|^2 = z_1\overline{z}_2,\label{ref9}
$$
которое равносильно уравнению \eqref{ref8}, так как \(\overline{z}_2\neq 0\).

Умножая обе части \eqref{ref9} на \(\displaystyle\frac{1}{|z_2|^2}\), получаем \(z=\displaystyle\frac{z_1\overline{z}_2}{|z_2|^2}\), то есть
$$
\frac{z_1}{z_2}=\frac{z_1\overline{z}_2}{|z_2|^2},\nonumber
$$
или
$$
\frac{z_1}{z_2}=\frac{x_1+iy_1}{x_2+iy_2}=\frac{(x_1+iy_1)(x_2-iy_2)}{x_2^2+y_2^2}=\frac{x_1x_2+y_1y_2}{x_2^2+y_2^2}+i\frac{x_2y_1-x_1y_2}{x_2^2+y_2^2}.\ \bullet\nonumber
$$

Эту формулу можно не запоминать — важно знать, что она получается умножением числителя и знаменателя на число, сопряженное со знаменателем. Пример 1

Пример 1.

Найти частное \(\displaystyle \frac{z_1}{z_2}\), если \(z_1=5-2i,\ z_2=3 + 4i\).

$$
\triangle\quad \frac{z_1}{z_2}=\frac{(5-2i)(3-4i)}{(3+4i)(3-4i)}=\frac{15-26i+8i^2}{25}=\frac7{25}-\frac{26}{25}i.\ \blacktriangle\nonumber
$$

Решение системы линейных уравнений

Наборы линейных уравнений довольно часто встречаются в повседневных расчетах, поэтому методов их решения придумано великое множество. Но перед рассмотрением самого простого алгоритма нахождения неизвестных стоит вспомнить о том, что вообще может иметь система таких уравнений:

— иметь только одно верное решение;

— иметь бесконечное множество корней;

— иметь несовместный тип (когда решений быть не может).

Метод Гаусса, используемый нашим АБАК-ботом — самое мощное и безотказное средство для поиска решения любой системы уравнений линейного типа.

Возвращаясь к терминам высшей математики, метод Гаусса можно сформулировать так: с помощью элементарных преобразований система уравнений должна быть приведена к равносильной системе треугольного типа (или т.н. ступенчатого типа), из которой постепенно, начиная с самого последнего уравнения, находятся оставшиеся переменные. При всем этом элементарные преобразования над системами — ровно то же самое, что и элементарные преобразования матриц в переложении для строк.

Наш бот умеет молниеносно выдавать решения системы линейных уравнений с неограниченным количеством переменных!

Практическое применение решение таких систем находит в электротехнике и геометрии: расчетах токов в сложных контурах и выведение уравнения прямой при пересечении трех плоскостей  а также в множестве специализированных задач.

Данный сервис позволяет решать неограниченную по размерам систему линейных уравнений с комплексными коэффициентами.

Практическое применение:

 

Ну, раз  бот умеет считать решения комплексных систем, то для него не составит труда считать частный случай, когда элементы системы являются вещественные числа. 

 

Второе, в школе Вам это наверняка не понадобится, но вот в институте, особенно институтах связи, при расчетах токов в сложных контурах в электротехнике, наверняка пригодится.

 

Аргумент комплексного числа

      Рассмотрим радиус–вектор произвольного, но отличного от нуля, комплексного числа   z.

      Аргументом комплексного числа z называют угол φ между положительным направлением вещественной оси и радиус-вектором    z.

      Аргумент комплексного числа  z  считают положительным, если поворот от положительного направления вещественной оси к  радиус-вектору z  происходит против часовой стрелки, и отрицательным  — в случае поворота по часовой стрелке (см. рис.).

      Считается, что комплексное число нуль аргумента не имеет.

      Поскольку аргумент любого комплексного числа определяется с точностью до слагаемого 2kπ , где  k  — произвольное целое число, то вводится, главное значение аргумента, обозначаемое   arg z   и удовлетворяющее неравенствам:

      Тогда оказывается справедливым равенство:

      Если для комплексного числа   z = x + i y   нам известны его модуль   r = | z | и его аргумент φ, то мы можем найти вещественную и мнимую части по формулам

(3)

      Если же комплексное число   z = x + i y   задано в алгебраической форме, т.е. нам известны числа   x   и   y,   то модуль этого числа, конечно же, определяется по формуле

(4)

а аргумент определяется в соответствии со следующей Таблицей 1.

      Для того, чтобы не загромождать запись, условимся, не оговаривая этого особо, символом  k  обозначать в Таблице 1 произвольное целое число.

      Таблица 1. – Формулы для определения аргумента числа   z = x + i y

Расположениечисла  z Знаки x и y Главное значение аргумента Аргумент Примеры
Положительная вещественнаяполуось

x > 0 ,

y = 0

φ = 2kπ

x > 0 ,

y > 0

Положительнаямнимаяполуось

x = 0 ,

y > 0

x < 0 ,

y > 0

Отрицательнаявещественнаяполуось

x < 0 ,

y = 0

π φ = π + 2kπ

x < 0 ,

y < 0

Отрицательнаямнимаяполуось

x = 0 ,

y < 0

x > 0 ,

y < 0

Расположениечисла  z Положительнаявещественнаяполуось
Знаки x и y

x > 0 ,

y = 0

Главноезначениеаргумента
Аргумент φ = 2kπ
Примеры
Расположениечисла  z  
Знаки x и y

x > 0 ,

y > 0

Главноезначениеаргумента
Аргумент
Примеры
Расположениечисла  z Положительнаямнимаяполуось
Знаки x и y

x = 0 ,

y > 0

Главноезначениеаргумента
Аргумент
Примеры
Расположениечисла  z  
Знаки x и y

x < 0 ,

y > 0

Главноезначениеаргумента
Аргумент
Примеры
Расположениечисла  z Отрицательнаявещественнаяполуось
Знаки x и y

x < 0 ,

y = 0

Главноезначениеаргумента π
Аргумент φ = π + 2kπ
Примеры
Расположениечисла  z  
Знаки x и y

x < 0 ,

y < 0

Главноезначениеаргумента
Аргумент
Примеры
Расположениечисла  z Отрицательнаямнимаяполуось
Знаки x и y

x = 0 ,

y < 0

Главноезначениеаргумента
Аргумент
Примеры
Расположениечисла  z  
Знаки x и y

x < 0 ,

y < 0

Главноезначениеаргумента
Аргумент
Примеры

Расположение числа   z :

Положительная вещественная полуось

Знаки x и y :

x > 0 ,   y = 0

Главное значение аргумента:

Аргумент:

φ = 2kπ

Примеры:

Расположение числа   z :

Знаки x и y :

x > 0 ,   y > 0

Главное значение аргумента:

Аргумент:

Примеры:

Расположение числа   z :

Положительная мнимая полуось

Знаки x и y :

x = 0 ,   y > 0

Главное значение аргумента:

Аргумент:

Примеры:

Расположение числа   z :

Знаки x и y :

x < 0 ,   y > 0

Главное значение аргумента:

Аргумент:

Примеры:

Расположение числа   z :

Отрицательная вещественная полуось

Знаки x и y :

x < 0 ,   y = 0

Главное значение аргумента:

π

Аргумент:

φ = π + 2kπ

Примеры:

Расположение числа   z :

Знаки x и y :

x < 0 ,   y < 0

Главное значение аргумента:

Аргумент:

Примеры:

Расположение числа   z :

Отрицательная мнимая полуось

Знаки x и y :

x = 0 ,   y < 0

Главное значение аргумента:

Аргумент:

Примеры:

Расположение числа   z :

Знаки x и y :

x < 0 ,   y < 0

Главное значение аргумента:

Аргумент:

Примеры:

Алгебраическая форма комплексного числа. Сложение, вычитание, умножение и деление комплексных чисел

С алгебраической формой комплексного числа мы уже познакомились,  – это и есть алгебраическая форма комплексного числа. Почему речь зашла о форме? Дело в том, что существуют еще тригонометрическая и показательная форма комплексных чисел, о которых пойдет речь в следующем параграфе.

Действия с комплексными числами не представляют особых сложностей и мало чем отличаются от обычной алгебры.

Сложение комплексных чисел

Пример 1

Сложить два комплексных числа ,

Для того чтобы сложить два комплексных числа нужно сложить их действительные и мнимые части:

Просто, не правда ли? Действие настолько очевидно, что не нуждается в дополнительных комментариях.

Таким нехитрым способом можно найти сумму любого количества слагаемых: просуммировать действительные части и просуммировать мнимые части.

Для комплексных чисел справедливо правило первого класса:  – от перестановки слагаемых сумма не меняется.

Вычитание комплексных чисел

Пример 2

Найти разности комплексных чисел  и , если ,

Действие аналогично сложению, единственная особенность состоит в том, что вычитаемое нужно взять в скобки, а затем – стандартно раскрыть эти скобки со сменой знака:

Результат не должен смущать, у полученного числа две, а не три части. Просто действительная часть – составная: . Для наглядности ответ можно переписать так: .

Рассчитаем вторую разность:
Здесь действительная часть тоже составная:

Чтобы не было какой-то недосказанности, приведу короткий пример с «нехорошей» мнимой частью: . Вот здесь без скобок уже не обойтись.

Умножение комплексных чисел

Настал момент познакомить вас со знаменитым равенством:

Пример 3

Найти произведение комплексных чисел  ,

Очевидно, что произведение следует записать так:

Что напрашивается? Напрашивается раскрыть скобки по правилу умножения многочленов. Так и нужно сделать! Все алгебраические действия вам знакомы, главное, помнить, что  и быть внимательным.

Повторим, omg, школьное правило умножения многочленов: Чтобы умножить многочлен на многочлен нужно каждый член одного многочлена умножить на каждый член другого многочлена.

Я распишу подробно:

Надеюсь, всем было понятно, что

Внимание, и еще раз внимание, чаще всего ошибку допускают в знаках. Как и сумма, произведение комплексных чисел перестановочно, то есть справедливо равенство:

Как и сумма, произведение комплексных чисел перестановочно, то есть справедливо равенство: .

В учебной литературе и на просторах Сети легко найти специальную формулу для вычисления произведения комплексных чисел. Если хотите, пользуйтесь, но мне кажется, что подход с умножением многочленов универсальнее и понятнее. Формулу приводить не буду, считаю, что в данном случае – это забивание головы опилками.

Деление комплексных чисел

Пример 4

Даны комплексные числа , . Найти частное .

Составим частное:

Деление чисел осуществляется методом умножения знаменателя и числителя на сопряженное знаменателю выражение.

Вспоминаем бородатую формулу  и смотрим на наш знаменатель: . В знаменателе уже есть , поэтому сопряженным выражением в данном случае является , то есть

Согласно правилу, знаменатель нужно умножить на , и, чтобы ничего не изменилось, домножить числитель на то же самое число :

Далее в числителе нужно раскрыть скобки (перемножить два числа по правилу, рассмотренному в предыдущем пункте). А в знаменателе воспользоваться формулой  (помним, что и не путаемся в знаках!!!).

Распишу подробно:

Пример я подобрал «хороший», если взять два числа «от балды», то в результате деления почти всегда получатся дроби, что-нибудь вроде .

В ряде случаев перед делением дробь целесообразно упростить, например, рассмотрим частное чисел: . Перед делением избавляемся от лишних минусов: в числителе и в знаменателе выносим минусы за скобки и сокращаем эти минусы: . Для любителей порешать приведу правильный ответ:

Редко, но встречается такое задание:

Пример 5

Дано комплексное число . Записать данное число в алгебраической форме (т.е. в форме ).

Приём тот же самый – умножаем знаменатель и числитель на сопряженное знаменателю выражение. Снова смотрим на формулу . В знаменателе уже есть , поэтому знаменатель и числитель нужно домножить на сопряженное выражение , то есть на :

Пример 6

Даны два комплексных числа , . Найти их сумму, разность, произведение и частное.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

На практике запросто могут предложить навороченный пример, где нужно выполнить много действий с комплексными числами. Никакой паники: будьте внимательны, соблюдайте правила алгебры, обычный алгебраический порядок действий, и помните, что

Изображение комплексных чисел радиус-векторами координатной плоскости

      Рассмотрим плоскость с заданной на ней   Oxy   и напомним, что радиус-вектором на плоскости называют вектор, начало которого совпадает с началом системы координат.

      Назовем рассматриваемую плоскость комплексной плоскостью, и будем представлять комплексное число   z = x + i y   радиус–вектором с координатами   (x , y).

      Назовем ось абсцисс Ox вещественной осью, а ось ординат Oy – мнимой осью.

      При таком представлении комплексных чисел сумме комплексных чисел соответствует сумма радиус-векторов, а произведению комплексного числа на вещественное число соответствует произведение радиус–вектора на это число.

Мир математики

Достойный внимания сайт, предоставляющий после полученного ответа подробные пояснения. Работать с ним также очень легко:

вводите условия в соответствующие поля;

  • выбираете нужное действие;
  • после нажатия на выбранную операцию будет начато вычисление и выдан результат.

Здесь вы найдете при необходимости подробную инструкцию для работы, так что точно не запутаетесь. Доступны разные варианты вычислительных сервисов, к примеру, матричный, инженерный и прочие.

Полезный контент:

  • Формат heic, чем открыть, что это такое?
  • Перевод с английского на русский с транскрипцией — лучшие онлайн сервисы
  • Видеодрайвер перестал отвечать и был восстановлен — что за ошибка?
  • Запись видео с экрана компьютера — какие программы в этом помогут?
  • Караоке онлайн петь бесплатно с баллами — какие сервисы в этом помогут

Извлечение корня.

Рассмотрим уравнение
$$
z^n=a,\label{ref22}
$$
где \(a\neq 0\) — комплексное число, \(n\) — натуральное число.

Если \(z=re^{i\varphi}, \ a=\rho e^{i\theta}\), то уравнение \eqref{ref22} примет вид
$$
r^n e^{in\varphi}=\rho e^{i\theta},\nonumber
$$
откуда
$$
r^n=\rho,\quad n\varphi=\theta+2k\pi,\quad k\in\mathbb{Z},\nonumber
$$
и поэтому
$$
r=\sqrt{\rho},\qquad \varphi_k=\frac{1}{n}(\theta+2k\pi),\quad k\in \mathbb{Z},\label{ref23}
$$
то есть числа
$$
z_k=\sqrt{\rho}e^{i\varphi_k}\label{ref24}
$$
являются корнями уравнения \eqref{ref22} и других корней это уравнение не имеет.

Заметим, что числа \(z_0,\ z_1,\ …,\ z_{n-1}\) различны, так как их аргументы \(\displaystyle\varphi_0=\frac{\theta}{n},\ \varphi_1=\frac{\theta}{n}+\frac{2\pi}{n},\ …,\ \varphi_{n-1}=\frac{\theta}{n}+\frac{2\pi(n-1)}{n}\) различны и отличаются друг от друга меньше, чем на \(2\pi\). Далее, \(z_n = z_0\), так как \(|z_n| = |z_0|=\displaystyle\sqrt{\rho}\) и \(\varphi_n=\varphi_0+2\pi\). Аналогично, \(z_{n+1} = z_1,\ z_{-1} = z_{n-1}\) и т. д.

Итак, при \(a\neq 0\) уравнение \eqref{ref22} имеет ровно \(n\) различных корней, определяемых формулами \eqref{ref23} и \eqref{ref24}, где \(k=0,1,…,n-1\).

На комплексной плоскости точки \(z_k\ (k=\overline{0,n-1})\) располагаются в вершинах правильного \(n\)-угольника, вписанного в окружность радиуса \(\displaystyle \sqrt{\rho}\) с центром в точке 0.

Пример 5.

Найти все корни уравнения \(z^4 = 1 + i\).

\(\triangle\) Корни \(z_k\ (k = \overline{0,3})\) этого уравнения определяются формулами \eqref{ref23} и \eqref{ref24}, где \(\displaystyle \rho=|1 + i| =\sqrt{2},\ \theta=\frac{\pi}{4}\), то есть
$$
z_k=\sqrt{2}e^{i\varphi_k},\nonumber
$$
где
$$
\varphi_k=\frac{\pi}{16}+\frac{\pi k}{2},\quad k=0,1,2,3.\nonumber
$$

Рис. 31.6

Точки \(z_k\) располагаются в вершинах квадрата (рис. 31.6). \(\blacktriangle\)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector