Что такое компиляция

Проекты

Чтобы написать программу на C++ внутри IDE, мы обычно начинаем с создания нового проекта (мы покажем вам, как это сделать чуть позже). Проект – это контейнер, в котором хранятся все файлы исходного кода, изображения, файлы данных и т.д., которые необходимы для создания исполняемого файла (или библиотеки, веб-сайта и т.д.), который вы сможете запускать или использовать. Проект также сохраняет различные настройки IDE, компилятора и компоновщика, а также запоминает, где вы остановились, чтобы позже, при повторном открытии проекта состояние IDE можно было восстановить с того места, где вы остановились. Когда вы решите скомпилировать свою программу, все файлы .cpp в проекте будут скомпилированы и слинкованы.

Каждый проект соответствует одной программе. Когда вы будете готовы создать вторую программу, вам нужно будет либо создать новый проект, либо перезаписать код в существующем проекте (если вы не хотите его оставлять). Файлы проекта обычно специфичны для конкретной IDE, поэтому проект, созданный в одной IDE, необходимо будет заново создать в другой IDE.

Лучшая практика

Создавайте новый проект для каждой новой программы, которую вы пишете.

Nuitka

Уже в процессе работы над статьей, я узнал про еще один проект с аналогичными целями. Механизм работы Nuitka сильно напоминает описанный выше. Разница заключается в том, что Nuitka компилирует Python модуль в С++ код, который также собирается в СPython Extension. Дополнительно существует возможность собрать весь проект в один исполняемый файл, тогда уже сам CPython подключается к проекту как динамическая библиотека libpython.

Nuitka пока не учитывает аннотацию типов, поэтому результирующий код и скорость работы не зависят от наличия аннотаций. Полученная же скорость в моем тесте соответствует результату mypy на не аннотированном коде.

Создание файла исходного кода на языке C и его компиляция из командной строкиCreate a C source file and compile it on the command line

  1. В окне командной строки разработчика введите команду , чтобы изменить текущий рабочий каталог на корень диска C:.In the developer command prompt window, enter to change the current working directory to the root of your C: drive. Затем введите , чтобы создать каталог, и введите , чтобы перейти к этому каталогу.Next, enter to create a directory, and then enter to change to that directory. В этом каталоге будут находиться исходный файл и скомпилированная программа.This directory will hold your source file and the compiled program.

  2. В командной строке разработчика введите команду .Enter at the developer command prompt. В появившемся диалоговом окне блокнота с оповещением выберите Да , чтобы создать файл simple.c в рабочем каталоге.In the Notepad alert dialog that pops up, choose Yes to create a new simple.c file in your working directory.

  3. В окне блокнота введите следующие строки кода:In Notepad, enter the following lines of code:

  4. В строке меню блокнота выберите команду Файл > Сохранить , чтобы сохранить файл simple.c в рабочем каталоге.On the Notepad menu bar, choose File > Save to save simple.c in your working directory.

  5. Вернитесь к окну командной строки разработчика.Switch back to the developer command prompt window. Введите в командной строке, чтобы получить список содержимого каталога c:\simple.Enter at the command prompt to list the contents of the c:\simple directory. Вы увидите исходный файл simple.c в списке каталогов, который выглядит примерно так:You should see the source file simple.c in the directory listing, which looks something like:

    Даты и некоторые другие данные будут отличаться на вашем компьютере.The dates and other details will differ on your computer. Если вы не видите файл исходного кода simple.c, убедитесь в том, что вы открыли созданный каталог c:\simple и сохранили файл исходного кода в нем в Блокноте.If you don’t see your source code file, simple.c, make sure you’ve changed to the c:\simple directory you created, and in Notepad, make sure that you saved your source file in this directory. Кроме того, убедитесь в том, что исходный код был сохранен с расширением имени файла .c, а не .txt.Also make sure that you saved the source code with a .c file name extension, not a .txt extension.

  6. Чтобы скомпилировать программу, в командной строке разработчика введите .To compile your program, enter at the developer command prompt.

    Имя исполняемой программы (simple.exe) отображается в информации, выводимой компилятором.You can see the executable program name, simple.exe, in the lines of output information that the compiler displays:

    Примечание

    Если вы получаете сообщение об ошибке, например «cl не распознается как внутренняя или внешняя команда, исполняемая программа или пакетный файл», ошибке C1034 или LNK1104, командная строка разработчика настроена неправильно.If you get an error such as «‘cl’ is not recognized as an internal or external command, operable program or batch file,» error C1034, or error LNK1104, your developer command prompt is not set up correctly. Чтобы получить сведения о том, как устранить эту проблему, вернитесь к разделу Открыть командную строку разработчика.For information on how to fix this issue, go back to the Open a developer command prompt section.

    Примечание

    Если вы получаете другое сообщение об ошибке или предупреждение компилятора или компоновщика, проверьте исходный код, исправьте ошибки, сохраните его и снова запустите компилятор.If you get a different compiler or linker error or warning, review your source code to correct any errors, then save it and run the compiler again. Для получения сведений о конкретных ошибках введите номер ошибки в поле поиска вверху этой страницы.For information about specific errors, use the search box at the top of this page to look for the error number.

  7. Чтобы запустить программу, в командной строке введите .To run your program, enter at the command prompt.

    Программа выводит следующий текст и затем закрывается:The program displays this text and then exits:

    Поздравляем! Вы скомпилировали и запустили программу на C с помощью командной строки.Congratulations, you’ve compiled and run a C program by using the command line.

Генерация кода

Генерация машинного кода

Большинство компиляторов переводит программу с некоторого высокоуровневого языка программирования в машинный код, который может быть непосредственно выполнен физическим процессором. Как правило, этот код также ориентирован на исполнение в среде конкретной операционной системы, поскольку использует предоставляемые ею возможности (системные вызовы, библиотеки функций). Архитектура (набор программно-аппаратных средств), для которой компилируется (собирается) машинно-ориентированная программа, называется целевой машиной.

Результат компиляции — исполнимый программный модуль — обладает максимально возможной производительностью, однако привязан к конкретной операционной системе (семейству или подсемейству ОС) и процессору (семейству процессоров) и не будет работать на других.

Для каждой целевой машины (IBM, Apple, Sun, Эльбрус и т. д.) и каждой операционной системы или семейства операционных систем, работающих на целевой машине, требуется написание своего компилятора. Существуют также так называемые кросс-компиляторы, позволяющие на одной машине и в среде одной ОС генерировать код, предназначенный для выполнения на другой целевой машине и/или в среде другой ОС. Кроме того, компиляторы могут оптимизировать код под разные модели из одного семейства процессоров (путём поддержки специфичных для этих моделей особенностей или расширений наборов команд). Например, код, скомпилированный под процессоры семейства Pentium, может учитывать особенности распараллеливания инструкций и использовать их специфичные расширения — MMX, SSE и т. п.

Некоторые компиляторы переводят программу с языка высокого уровня не прямо в машинный код, а на язык ассемблера. (Пример: PureBasic, транслирующий бейсик-код в ассемблер FASM.) Это делается для упрощения части компилятора, отвечающей за генерацию кода, и повышения его переносимости (задача окончательной генерации кода и привязки его к требуемой целевой платформе перекладывается на ассемблер), либо для возможности контроля и исправления результата компиляции (в том числе ручной оптимизации) программистом.

Генерация байт-кода

Результатом работы компилятора может быть программа на специально созданном низкоуровневом языке двоично-кодовых команд, выполняемых виртуальной машиной. Такой язык называется псевдокодом или байт-кодом. Как правило, он не есть машинный код какого-либо компьютера и программы на нём могут исполняться на различных архитектурах, где имеется соответствующая виртуальная машина, но в некоторых случаях создаются аппаратные платформы, напрямую выполняющие псевдокод какого-либо языка. Например, псевдокод языка Java называется байт-кодом Java и выполняется в Java Virtual Machine, для его прямого исполнения была создана спецификация процессора picoJava. Для платформы .NET Framework псевдокод называется Common Intermediate Language (CIL), а среда исполнения — Common Language Runtime (CLR).

Некоторые реализации интерпретируемых языков высокого уровня (например, Perl) используют байт-код для оптимизации исполнения: затратные этапы синтаксического анализа и преобразование текста программы в байт-код выполняются один раз при загрузке, затем соответствующий код может многократно использоваться без перекомляции.

Динамическая компиляция

Основная статья: Динамическая компиляция (англ.)

Из-за необходимости интерпретации байт-код выполняется значительно медленнее машинного кода сравнимой функциональности, однако он более переносим (не зависит от операционной системы и модели процессора). Чтобы ускорить выполнение байт-кода, используется динамическая компиляция, когда виртуальная машина транслирует псевдокод в машинный код непосредственно перед его первым исполнением (и при повторных обращениях к коду исполняется уже скомпилированный вариант).

Наиболее популярной разновидностью динамической компиляции является JIT. Другой разновидностью является инкрементальная компиляция.

CIL-код также компилируется в код целевой машины JIT-компилятором, а библиотеки .NET Framework компилируются заранее.

Структура компилятора

Процесс компиляции состоит из следующих этапов:

  1. Трансляция программы — трансляция всех или только изменённых модулей исходной программы.
  2. Компоновка машинно-ориентированной программы.

Структурные реализации компилятора могут быть следующими:

  1. И транслятор, и компоновщик могут целиком входить в состав компилятора как исполняемые программы.
  2. Компилятор сам выполняет лишь трансляцию компилируемой программы, компоновка же программы выполняется вызываемой компилятором отдельной программой-компоновщиком. Практически все современные компиляторы построены по такой схеме.
  3. Пакет программ, включающий в себя трансляторы с разных языков программирования и компоновщики.

По первой схеме строились самые первые компиляторы, — для современных компиляторов такая схема построения нехарактерна.

По второй схеме построены все без исключения компиляторы с языков высокого уровня. Любой такой компилятор сам выполняет только трансляцию и далее вызывает компоновщик как внешнюю подпрограмму, который и компонует машинно-ориентированную программу. Такая схема построения легко позволяет компилятору работать и в режиме транслятора с соответствующего языка программирования. Этот обстоятельство нередко служит поводом считать компилятор разновидностью транслятора, что естественно неверно, — все современные компиляторы такого типа все же выполняют компоновку, пусть и силами вызываемого компилятором внешнего компоновщика, тогда как транслятор сам никогда не выполняет вызов внешнего компоновщика. Но это же обстоятельство позволяет компилятору с одного языка программирования на фазе компоновки включать в программу написанную на одном языке программирования функции-подпрограммы из уже оттранслированных соответствующим транслятором/компилятором, написанные на ином языке программирования. Так в программу на C/C++ можно вставлять функции написанные например на Pascal или Fortran. Аналогично и напротив написанная на C/C++ функции могут быть вставлены в Pascal- или Fortran-программу соответственно. Это было бы невозможно без поддержки многими современными компиляторами генерации кода вызова процедур (функций) в соответствии с соглашениями иных языков программирования. Например современные компиляторы с языка Pascal помимо организации вызова процедур/функций в стандарте самого Pascal поддерживают организацию вызова процедурой/функцией в соответствии с соглашениями языка C/C++. (Например чтобы на уровне машинного кода написанная на Pascal процедура/функция работала с входными параметрами в соответствии с соглашениями языка C/C++, — оператор объявления такой Pascal-процедуры/Pascal-функции должен содержать ключевое слово cdecl.)

Наконец по третьей схеме построены компиляторы, представляющие собой целые системы, включающие в себя трансляторы с разных языков программирования и компоновщики. Также любой такой компилятор может использовать в качестве транслятора любой способный работать в режиме транслятора компилятор с конкретного языка высокого уровня. Естественно такой компилятор может компилировать программу, разные части исходного текста которой написаны на разных языках программирования. Нередко такие компиляторы управляются встроенным интерпретатором того или иного командного языка. Яркий пример таких компиляторов — имеющийся во всех UNIX-системах (в частности в Linux) компилятор make.

Трансляция программы как неотъемлемая составляющая компиляции включает в себя:

  1. Лексический анализ. На этом этапе последовательность символов исходного файла преобразуется в последовательность лексем.
  2. Синтаксический (грамматический) анализ. Последовательность лексем преобразуется в древо разбора.
  3. Семантический анализ. На этой фазе древо разбора обрабатывается с целью установления его семантики (смысла) — например, привязка идентификаторов к их объявлениям, типам данных, проверка совместимости, определение типов выражений и т. д. Результат обычно называется «промежуточным представлением/кодом», и может быть дополненным древом разбора, новым деревом, абстрактным набором команд или чем-то ещё, удобным для дальнейшей обработки.
  4. Оптимизация. Выполняется удаление излишних конструкций и упрощение кода с сохранением его смысла. Оптимизация может быть на разных уровнях и этапах — например, над промежуточным кодом или над конечным машинным кодом.
  5. Генерация кода. Из промежуточного представления порождается код на целевом машинно-ориентированном языке.

Если ваша программа запускается, но окно мигает и сразу закрывается

Некоторые IDE автоматически не приостанавливают экран консоли после завершения выполнения программы. Ваша программа запускается, но окно вывода закрывается, прежде чем вы сможете просмотреть результаты.

Если это так с вашей IDE, следующие два шага решат вашу проблему:

Сначала добавьте или убедитесь, что следующие строки находятся в верхней части вашей программы (пользователи Visual Studio должны убедиться, что эти строки появляются после или , если таковые существуют):

Во-вторых, добавьте следующий код в конец функции (непосредственно перед оператором ):

Это приведет к тому, что ваша программа будет ждать, пока пользователь нажмет какую-нибудь клавишу, прежде чем продолжить, что даст вам время изучить вывод вашей программы, прежде чем IDE закроет окно консоли.

Другие решения, такие как обычно предлагаемое , могут работать только в определенных операционных системах, и их следует избегать.

Ваш антивирус также может блокировать выполнение программы. В таком случае попробуйте временно отключить его и посмотреть, решится ли проблема.

Для пользователей Visual Studio

Visual Studio не будет в конце делать паузу в работе консольного приложения, если оно запускается с отладкой (меню Отладка (Debug) → Начать отладку (Start Debugging)). Если вы хотите, чтобы она сделала паузу, вы можете либо использовать приведенное выше решение с дополнительным кодом, либо запустить свою программу без отладки (меню Отладка (Debug) → Начать отладку (Start Without Debugging)).

Рабочий цикл программы

При использовании любого языка программирования существует определенный рабочий цикл создания кода. Вы пишете его, запускаете, находите ошибки и отлаживаете. Таким образом, вы переписываете и дописываете программу, проверяете ее. То, о чем пойдет речь в этой статье, это «запускаемая» часть программы.

Когда пишете программу, вы хотите, чтобы ее инструкции работали на компьютере. Компьютер обрабатывает информацию с помощью процессора, который поэтапно выполняет инструкции, закодированные в двоичном формате. Как из выражения «a = 3;» получить закодированные инструкции, которые процессор может понять?

Мы делаем это с помощью компиляции. Существует специальные приложения, известные как компиляторы. Они принимают программу, которую вы написали. Затем анализируют и разбирают каждую часть программы и строят машинный код для процессора. Часто его также называют объектным кодом.

На одном из этапов процесса обработки задействуется компоновщик, принимающий части программы, которые отдельно были преобразованы в объектный код, и связывает их в один исполняемый файл. Вот схема, описывающая данный процесс:

Первые компиляторы были написаны непосредственно через машинный код или с использованием ассемблеров. Но цель компилятора очевидна: перевести программу в исполняемый машинный код для конкретного процессора.

Некоторые языки программирования разрабатывались с учетом компиляции. C, например, предназначался для того, чтобы дать возможность программистам с легкостью реализовать разные вещи. Но в итоге он разрабатывался таким образом, чтобы его можно было легко перевести на машинный код. Компиляция в программировании это серьезно!

Не все языки программирования учитывают это в своей концепции. Например, Java предназначался для запуска в «интерпретирующей» среде, а Python всегда должен интерпретироваться.

Примечания

  1. ГОСТ 19781-83 // Вычислительная техника. Терминология: Справочное пособие. Выпуск 1 / Рецензент канд. техн. наук Ю. П. Селиванов. — М.: Издательство стандартов, 1989. — 168 с. — 55 000 экз. — ISBN 5-7050-0155-X.; см. также ГОСТ 19781-90
  2. Першиков В. И., Савинков В. М. Толковый словарь по информатике / Рецензенты: канд. физ.-мат. наук А. С. Марков и д-р физ.-мат. наук И. В. Поттосин. — М.: Финансы и статистика, 1991. — 543 с. — 50 000 экз. — ISBN 5-279-00367-0.
  3. ↑ СТ ИСО 2382/7-77 // Вычислительная техника. Терминология. Указ. соч.
  4. Борковский А. Б. Англо-русский словарь по программированию и информатике (с толкованиями). — М.: Русский язык, 1990. — 335 с. — 50 050 (доп,) экз. — ISBN 5-200-01169-3.
  5. Толковый словарь по вычислительным системам = Dictionary of Computing / Под ред. В. Иллингуорта и др.: Пер. с англ. А. К. Белоцкого и др.; Под ред. Е. К. Масловского. — М.: Машиностроение, 1990. — 560 с. — 70 000 (доп,) экз. — ISBN 5-217-00617-X (СССР), ISBN 0-19-853913-4 (Великобритания).
  6. Н. А. Криницкий, Г. А. Миронов, Г. Д. Фролов. Программирование / Под ред. М. Р. Шура-Бура. — М.: Государственное издательство физико-математической литературы, 1963.

Компиляция программ Linux

Первое что нам понадобиться — это исходники самой программы. В этом примере мы будем собирать самую последнюю версию vim. Это вполне нейтральная программа, достаточно простая и нужная всем, поэтому она отлично подойдет для примера.

Получение исходников

Первое что нам понадобиться, это исходные коды программы, которые можно взять на GitHub. Вы можете найти исходники для большинства программ Linux на GitHub. Кроме того, там же есть инструкции по сборке:

Давайте загрузим сами исходники нашей программы с помощью утилиты git:

Также, можно было скачать архив на сайте, и затем распаковать его в нужную папку, но так будет удобнее. Утилита создаст папку с именем программы, нам нужно сделать ее рабочей:

Настройка configure

Дальше нам нужно запустить скрипт, который проверит нашу программу на совместимость с системой и настроит параметры компиляции. Он называется configure и поставляется разработчиками программы вместе с исходниками. Весь процесс компиляции описан в файле Makefile, его будет создавать эта утилита.

Если configure нет в папке с исходниками, вы можете попытаться выполнить такие скрипты чтобы его создать:

Также для создания этого скрипта можно воспользоваться утилитой automake:

Утилита automake и другие из ее набора генерируют необходимые файлы на основе файла Mackefile.am. Этот файл обязательно есть в большинстве проектов.

После того как вы получили configure мы можем переходить к настройке. Одним из огромных плюсов ручной сборки программ есть то, что вы можете сами выбрать с какими опциями собирать программу, где она будет размещена и какие дополнительные возможности стоит включить. Все это настраивается с помощью configure. Полный набор опций можно посмотреть, выполнив:

Рассмотрим наиболее часто используемые, стандартные для всех программ опции:

  • —prefix=PREFIX — папка для установки программы, вместо /, например, может быть /usr/local/, тогда все файлы будут распространены не по основной файловой системе, а в /usr/local;
  • —bindir=DIR — папка для размещения исполняемых файлов, должна находится в PREFIX;
  • —libdir=DIR — папка для размещения и поиска библиотек по умолчанию, тоже в PREFIX;
  • —includedir=DIR — папка для размещения man страниц;
  • —disable-возможность — отключить указанную возможность;
  • —enable-возможность — включить возможность;
  • —with-библиотека — подобно enable активирует указанную библиотеку или заголовочный файл;
  • —without-библиотека — подобное disable отключает использование библиотеки.

Вы можете выполнить configure без опций, чтобы использовать значения по умолчанию, но также можете вручную указать нужные пути. В нашем случае ./configure есть, и мы можем его использовать:

Во время настройки утилита будет проверять, есть ли все необходимые библиотеки в системе, и если нет, вам придется их установить или отключить эту функцию, если это возможно. Например, может возникнуть такая ошибка: no terminal library found checking for tgetent()… configure: error: NOT FOUND!

В таком случае нам необходимо установить требуемую библиотеку. Например, программа предлагает ncurses, поэтому ставим:

Приставка lib всегда добавляется перед библиотеками, а -dev — означает, что нам нужна библиотека со всеми заголовочными файлами. После удовлетворения всех зависимостей настройка пройдет успешно.

Сборка программы

Когда настройка будет завершена и Makefile будет готов, вы сможете перейти непосредственно к сборке программы. На этом этапе выполняется непосредственно преобразование исходного кода в машинный. Утилита make на основе Makefile сделает все необходимые действия:

Дальше осталось установить саму программу, если вы использовали опцию prefix, чтобы не устанавливать программу в основную файловую систему, то можно применить стандартную опцию make:

После этого программа будет установлена в указанную вами папку, и вы сможете ее использовать. Но более правильный путь — создавать пакет для установки программы, это делается с помощью утилиты checkinstall, она позволяет создавать как deb, так и rpm пакеты, поэтому может использоваться не только в Ubuntu. Вместо make install выполните:

Затем просто установите получившийся пакет с помощью dpkg:

После этого сборка программы полностью завершена и установлена, так что вы можете переходить к полноценному использованию.

Если вы устанавливали программу с помощью make install, то удалить ее можно выполнив в той же папке обратную команду:

Команда удалит все файлы, которые были скопированы в файловую систему.

Обозреватель решений Visual Studio

В левой или правой части окна вы должны увидеть окно под названием Обозреватель решений. В этом окне Visual Studio создала для вас решение (решение «HelloWorld»). Внутри него, имя которого выделено жирным шрифтом, находится ваш новый проект (HelloWorld). Visual Studio создала для вас в этом проекте ряд файлов, в том числе HelloWorld.cpp (в элементе дерева Исходные файлы (Source Files)). Вы также можете увидеть некоторые другие файлы .cpp или .h, которые пока можете игнорировать.

Рисунок 8 – Начальные окна Visual Studio 2019

В текстовом редакторе вы увидите, что Visual Studio уже открыла HelloWorld.cpp и создала для вас код. Выделите и удалите весь код и введите/скопируйте следующий код в вашу IDE:

Чтобы скомпилировать программу, либо нажмите F7 (если это не сработает, попробуйте Ctrl + Shift + B), либо перейдите в меню Сборка (Build) → Собрать решение (Build Solution). Если всё пойдет хорошо, вы должны увидеть следующее в окне вывода:

Или, в зависимости от выбранного языка:

Это означает, что ваша компиляция прошла успешно!

Вопрос: У меня вылетела ошибка C1010 («fatal error C1010: unexpected end of file while looking for precompiled header. Did you forget to add ‘#include «stdafx.h»‘ to your source?»). Что теперь?

Вы забыли отключить предварительно скомпилированные заголовки при создании проекта. Заново создайте свой проект (в соответствии с ) и обязательно отключите предварительно скомпилированные заголовки.

Чтобы запустить скомпилированную программу, нажмите Ctrl + F5 или перейдите в меню Отладка (Debug) и выберите Запуск без отладки (Start Without Debugging). Вы увидите следующее:

Рисунок 9 – Запуск программы

Это результат выполнения вашей программы! Поздравляем, вы скомпилировали и запустили свою первую программу!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector