Сетевой график: пример построения

Построение сетевых графиков.

Сетевой график — это последовательная схема, отражающая порядок выполнения работ проекта. Он позволит вам провести своего рода тестирование: продумать различные стратегические подходы, прежде чем начать работы.

Сетевой график включает три элемента.

• Событие — значительное происшествие в ходе выполнения проекта; иногда также называется узловым событием или вехой. Оно не имеет протяженности во времени и не потребляет ресурсов. Это мгновенная точка отсчета в вашем проекте (как указательный столб на дороге), которая характеризует начало или конец работы или группы работ. Примеры событий: «Черновик отчета утвержден» или «Начало проектирования».

В данном случае слово «событие» употребляется в непривычном для вас контексте. В обычной жизни «событием года» мы называем, например, торжественный прием по случаю избрания нового президента. Но в отличие от нашего термина, это событие не только имеет протяженность во времени, но и требует значительных ресурсов!

• Работа — действия, которые выполняются, чтобы перейти от одного события вашего проекта к другому. Она занимает время и потребляет ресурсы. Примеры описания работ: «Разработать формат отчета» или «Сформулировать требования к новому продукту».

• Продолжительность — действительное календарное время, требуемое на выполнение работы. Также называется периодом или временем работы. Продолжительность работы зависит от ее трудоемкости, количества исполнителей (с учетом их работоспособности), производительности используемого оборудования (например, вычислительная мощность компьютера) и доступности требуемых ресурсов.

Понимание, из чего складывается это время, поможет найти средства и пути его сокращения. Предположим, для тестирования нового программного продукта нужно 24 часа. Если один работник будет заниматься этим ежедневно по шесть часов, то понадобится четыре дня. Одновременное привлечение двух исполнителей не ускорит работу, но в две смены они сделают ее за два дня.

Единицы времени применяются для описания двух взаимосвязанных, но разных характеристик работы. Продолжительность работы — это время от начала до ее завершения, в то время как трудоемкость — это количество затраченных на ее выполнение человеко-часов.

Если четыре исполнителя выполнят данную работу за пять рабочих дней, то это ее продолжительность, а трудоемкость составит 20 человеко-дней. (Трудоемкость подробнее рассматривается в главе 5.).

Чистое время задержки также включается в продолжительность работы. Например, вы отправили отчет на утверждение шефу. Он пролежал в приемной четыре дня и семь часов, после чего шеф в течение часа просмотрел и подписал отчет. Продолжительность работы в данном случае будет пять дней, хотя трудоемкость составила всего один час.

Независимо от сложности вашего проекта, его сетевой график будет содержать все те же три описанных элемента.

Глоссарий разработки сетевого графика

Построение сетевого графика методологически основано на общей концепции СПУ (системы планирования и управления) проектов. Ключевые аспекты данной методологии были рассмотрены в статье на тему сетевого планирования проекта. В настоящем материале мы развиваем начатое осмысление теоретических и прикладных вопросов сетевого моделирования. В первую очередь, нас интересует разработка сетевой диаграммы вида «вершина – работа» в контексте ее составления, оптимизации и корректировки. Логика сетевого планирования достаточно проста, математически метод не сложен.

Тем не менее, на практике применить полноценно эту модель удается не всегда. Возникают затруднения, во многом определяемые психологией участников, не готовых объективно рассчитать сроки исполнения сформулированных задач. Данный метод дает более слабый результат в условиях перегруженности ответственных ресурсов по проектным задачам. Сетевые графики хорошо работают в проектах, где ответственные исполнители заняты только на одном проекте, например, в строительстве. Ниже показана модель процесса календарного планирования, которая служит направляющим ориентиром в работе со средством планирования «сетевой график».

Схема разработки календарного плана проекта

Введем основные понятия, которые понадобятся для составления сетевой модели проекта и ее оптимизации:

отношение предшествования – это характеристика связи последующей работы в отношении предшествующей;
путь – это непрерывная последовательность операций (работ) в сетевом графике;
предшествующий путь – участок полного пути от исходного до рассматриваемого события;
последующий путь – участок полного пути от рассматриваемого события до любого следующего;
критический путь – это полный путь, характеризуемый нулевым резервом;
критическая работа – действие, для которого полный резерв имеет нулевое значение;
предкритическая работа – операция, для которой менеджер проекта установил число предельного значения полного резерва;
резерв пути – разница между временной длительностью проекта и длиной пути на графике;
веха – работа с нулевой продолжительностью, обозначает важное, значимое событие в проекте;
минимальное время от начала проекта до начала выполнения операции без нарушения отношения предшествования называется ранним сроком начала работы;
максимальное время с начала проекта до начала выполнения операции, которое позволяет проекту закончиться вовремя без нарушения отношения предшествования, называется поздним сроком начала работы;
минимальное время, которое требуется для выполнения всех работ без нарушения отношения предшествования, называется ранним окончанием проекта;
возобновляемый ресурс предполагает ограничение в использовании его на каждом шаге планируемого периода;
невозобновляемый ресурс предполагает ограничение в использовании его на всем периоде реализации проекта.

Пример построения сетевого графика

Несмотря на то, что описанный выше алгоритм может показаться сложным, на самом же деле построение сетевого графика задача несложная. Для того, чтобы убедиться в этом рассмотрим построение сетевого графика на простом примере ремонта детской комнаты.

Шаг 1. Определить основную цель проекта

Представьте, что сейчас лето, вашему сыну исполнилось 7 лет и в сентябре он идет в школу. Вы решил обновить его комнату к новому учебному году и сделать ее подходящей для школьника, т.е. должно появиться полноценной рабочее место, зонирование комнаты измениться, и т.д.

В этом случае целью нашего небольшого проекта будет —  сделать комнату пригодной и приятной для проживания мальчика, который пойдет в начальную школу.

Шаг 2. Выявить ограничения

Бюджет не более 100,000 руб., ремонтные работы можно вести только в рабочие дни с 10:00 до 18:00 с обязательным перерывом с 12:00 до 14:00. Итого получается — 6 рабочих часов в день.

Шаг 3. Определить состав работ

Немного поразмыслив мы накидали основные работы, которые надо сделать, а именно:

  • Нам нужен дизайн-проект новой комнаты;
  • Нам надо закупить материалы для ремонта;
  • Надо составить смету ремонта;
  • Надо выполнить сам ремонт;
  • И т.к. мы решили сделать небольшую перепланировку, то надо согласовать ее с ТСЖ.

Отобразим эти работы в виде блоков:

Рисунок 1. Состав работ

Шаг 4. Оценить длительность работ

Мы решили оценивать длительность работ в днях, т.к. до начала учебного года еще достаточно времени, то такая точность планирования нас вполне устраивает.

Рисунок 2. Длительность работ

Шаг 5. Определить последовательность работ

Теперь определим последовательность работ, мы будем использовать схему построения сетевого графика «сверху-вниз». Первая работа, которую необходимо выполнить — это работа «Разработать дизайн-проекта«. Затем мы оценим стоимость проекта, а параллельно начнем согласование с ТСЖ, т.к. эта задача занимает много времени. После того, как мы оценим проект и его согласуем, мы приступим к покупке всех необходимых материалов и уже затем начнем сам ремонт.

Рисунок 3. Последовательность работ

Укажем стрелками связи между работами.

Рисунок 4. Связи между работами

Шаг 7. Определить раннее начало и раннее окончание

Т.к. мы выбрали модель сетевого график «сверху-вниз», то начинаем его и просматривать сверху вниз, начиная с самой верхней работы, и далее по очереди двигаемся к самой нижней работе.

Напомним, что раннее начало последующей работы будет совпадать с ранним завершением предшествующей, а раннее окончание каждой из работ определяется как раннее начало плюс длительность работ Если предшествующих работ несколько, то ранним началом последующей работы будет наибольшее из значений раннего окончания одной из предшествующих работ.

Рисунок 5. Раннее начало и окончание работ

Шаг 8. Определить поздние начало и окончание

Для того, чтобы определить поздние начало и окончание просмотрим сетевой график в обратном направлении — снизу вверх. Позднее окончание работы будет совпадать с поздним началом последующей работы. Если последующих работ несколько, то поздним окончанием работы будет наименьшее из значений позднего начала последующих работ. Позднее начало каждой работы определяется как позднее окончание минус длительность работы.

Рисунок 6. Позднее начало и окончание работ

Шаг 9. Определить временной резерв

Вычислим временной резерв для каждой из работ. Он вычисляется как разница между поздним и ранним началом или поздним и ранним окончанием работы.

Рисунок 7. Временной резерв

Шаг 10. Выявить критический путь

Как мы уже знаем, критический путь — это цепочка работ, у которых резерв времени равен нулю. Выделим такие задачи на сетевом графике.

Рисунок 8. Критический путь

Задачи «Разработать дизайн-проект«, «Согласовать проект с ТСЖ» и «Закупить необходимые материалы«, «Провести ремонтные работы» составляю критический путь, а его длина составляет 19 дней. Это означает, что в текущем виде проект не может быть выполнен быстрее, чем за 19 дней. Если мы хотим сократить сроки проекта, то нам необходимо оптимизировать задачи, лежащие на критическом пути.

Например, мы можем начать ремонтные работы раньше получения согласования на перепланировку от ТСЖ, приняв на себя риски того, что согласование может быть не получено.

Просмотры:
69 389

Автоматическая сетевая диаграмма проекта с критическим путем в EXCEL

Построим автоматическую сетевую диаграмму проекта. Сетевую диаграмму изобразим на диаграмме MS EXCEL типа Точечная. На этой диаграмме выведем работы проекта в виде точек, стрелками изобразим связи между работами. Также изобразим на диаграмме критический(ие) путь(и). Сетевая диаграмма будет автоматически перестраиваться при изменении связей между работами и их длительности.

Данная статья является третьей статьей в цикле статей посвященных построению сетевой диаграммы проекта и является синтезом первых двух:

  1. В статье Метод критического пути в MS EXCEL показано как рассчитать длительность проекта, определить работы на критическом пути и как построить сетевую диаграмму проекта на листе MS EXCEL. Основной недостаток – при изменении связей между работами пользователю потребуется вносить серьезное изменение в сетевую диаграмму.
  2. В статье Автоматическая сетевая диаграмма проекта в MS EXCEL показано, как имея перечень работ и связи между ними, вычислить все пути проекта и отобразить их на стандартной диаграмме типа Точечная. При изменении связей – пути автоматически пересчитываются. Однако, критический путь не вычислялся в этой статье.

Рекомендуется прочитать вышеуказанные статьи перед первым прочтением.

Ниже показана диаграмма, которую мы будем создавать в этой статье. На диаграмме отображены все работы проекта (от А до U, синие точки), связи между ними (стрелки), работы на критическом пути (красные точки), критический путь (красные стрелки).

Примечание : Слово диаграмма используется в 2-х смыслах: сетевая диаграмма проекта (стандартный термин из управления проектом, Activity-on-node diagram ) и диаграмма MS EXCEL ( Excel Chart , см. вкладку , группа ). Диаграмма MS EXCEL типа Точечная будет использоваться для построения сетевой диаграммы проекта.

При изменении связей между работами и/или их длительности происходит перерасчет критического пути и сетевая диаграмма автоматически обновляется. Например, значительное увеличение длительности работы М (в нижнем пути сетевой диаграммы) приведет к изменению критического пути.

Такая сетевая диаграмма отображает критический путь даже нагляднее, чем стандартная диаграмма Ганта , хотя, конечно, не заменяет ее.

ВНИМАНИЕ! Построение данной сетевой диаграммы в этой статье приведено лишь с целью демонстрации технической реализуемости такого построения в MS EXCEL. Не ставилось целью сделать “удобную программу для пользователей”

Это означает, что при изменении пользователем количества работ/ добавления связей между работами (например, использования более 5 последователей), переименовании листов, рядов диаграммы и других изменений, в файле примера может потребоваться дополнительная настройка формул.

Такая настройка потребует от пользователя серьезных знаний MS EXCEL и времени.

Исходная информация

В качестве исходной информации дан перечень работ, их длительность и связи между работами.

Также вручную задаются координаты для отображения на диаграмме работ (диапазон ВА12:ВВ34 ).

Другой информации для построения сетевой диаграммы и вычисления критического пути не требуется.

Вычисление путей сетевой диаграммы

Как и в статье Автоматическая сетевая диаграмма проекта в MS EXCEL начнем построение сетевой диаграммы с вычисления путей.

В отличие от указанной статьи, здесь увеличено количество рассчитываемых путей (до 15) и максимальная длина путей (до 10 работ, включая вехи начала и окончания).

Алгоритм вычисления путей аналогичен, однако формулы изменены, чтобы позволить пользователю быстро увеличивать количество путей проекта и их длину.

Начиная с шага №1 (начиная со строки 96) формулы можно копировать вниз и вправо, чтобы при необходимости увеличить количество путей и их длину (количество шагов). На каждом шаге длина путей увеличиваются на одну работу. В случае наличия нескольких последователей у работы – увеличивается количество возможных путей.

После вычисления всех шагов, в диапазоне R62:AA76 выводится перечень всех путей проекта, содержащие входящие в них работы.

Построение сетевой диаграммы

Сначала на диаграмме выводятся работы (синие точки, ряд Работы ).

Затем выводятся все возможные пути проекта (ряды Путь_1, Путь_2, …, Путь_15 ).

Все работы, находящиеся на критическом пути, отмечаются красным цветом. Также на диаграмму выводится критический путь. Если путей несколько, то выводятся все пути (в файле примера выводятся максимум 3 критических пути). Если длительность работы О увеличить до 8 дней, то 3 пути станут критическими с длительностью по 65 дней.

Одновременно, работы проекта отображаются на диаграмме Ганта.

Варианты связей и отношение предшествования

Сетевые методы планирования строятся по моделям, в которых проект представляется как целостная совокупность взаимосвязанных работ. Данные модели во многом формируются типом и видом связей между операциями реализации проекта. С позиции типа различаются жесткие, мягкие и ресурсные связи. Видовое различие взаимосвязанности операций основано на отношения предшествования. Рассмотрим основные типы связи.

Мягкие связи. Им соответствует особая, «дискреционная» логика, дающая «мягкую» основу для выбора операций к размещению на диаграмму, диктуемого технологией. В то время как технология длительный период развивалась на протяжении многих циклов, вырабатываются правила делового оборота, не требующие дополнительной фиксации и планирования. Это экономит время, место модели, стоимость и не требует дополнительного контроля со стороны PM. Поэтому менеджер проекта сам решает, нужна ему такая выделенная операция, или нет.
Жесткие связи. Данный вид связей основан на технологической логике. Они предписывают выполнение конкретных действий строго после других, что сообразно с процессуальной логикой. Например, наладку оборудования можно осуществлять только после его монтажа. Тестирование недочетов технологии допустимо проводить, если сдача ее в опытную эксплуатацию произошла и т.д

Иными словами, принятая технология (неважно, в какой сфере она реализуется) жестко навязывает последовательность мероприятий и событий проекта, что и обуславливает соответствующий тип связи.
Ресурсные связи. В условиях назначения на один ответственный ресурс нескольких задач возникает его перегруженность, что может привести к удорожанию проекта

За счет подведения под менее критичную задачу дополнительного ресурса этого можно избежать, и такие связи называются ресурсными.

В момент формирования расписания проекта сначала применяются жесткие, а затем – мягкие связи. Далее, по необходимости, некоторые мягкие связи подлежат сокращению. Благодаря этому может быть достигнуто некоторое сокращение общей длительности проекта. В условиях перегруженности некоторых ответственных ресурсов из-за параллельных работ допустимо разрешение возникших конфликтов введением ресурсных связей. Однако следует контролировать, чтобы новые связи не привели к значительным изменениям общего плана.

Сопряженные работы как некая последовательность проектной задачи связаны друг с другом. Назовем их операциями А и В. Введем понятие отношения предшествования, которое рассматривается как некое ограничение на сроки и общую продолжительность, так как операция В не может начаться до момента окончания операции А. Это означает, что В и А связаны отношением простого предшествования, при этом вовсе не обязательно, чтобы В начиналось одномоментно с окончанием А. Например, отделочные работы начинаются после возведения крыши дома, но это не означает, что выполняться они должны в тот же момент, когда наступит указанное событие.

Метод сетевого моделирования

Сетевое планирование и управление получило активное развитие с 50-х годов прошлого века сначала в США, затем в других развитых странах и в СССР. Такие методы сетевого планирования, как CPM, PERT позволили существенно поднять «планку» проектного управления в направлении оптимизации временных и содержательных параметров графиков работ. Это дало возможность разрабатывать расписания проектных задач на основе более эффективной методологии сетевого моделирования, вобравшей в себя весь лучший опыт (схема методов календарного планирования приведена ниже). Сетевая диаграмма имеет различные названия, среди них:

  • сетевой график;
  • сетевая модель;
  • сеть;
  • граф сети;
  • стрелочная диаграмма;
  • PERT-диаграмма, и т.д.

Визуально сетевая модель проекта представляет собой графическую схему последовательного комплекса работ и связей между ними. Стоит заметить, что система планирования и управления проектом целостно отображается в графической форме состава операций, их временных протяженностей и взаимосвязанных событий. Основой метода построения модели служит раздел математики, именуемый теорией графов, сформировавшийся в начале 50-х – конце 60-х годов.

Методы календарного планирования и управления проектам

В модели сетевого планирования и управления под графом понимается геометрическая фигура, включающая бесконечное или конечное множество точек и линий, соединяющих между собой эти линии. Граничные точки графа называют его вершинами, а ориентированные в направлениях соединяющие их точки – ребрами или дугами. Сетевая модель в свой состав включает именно ориентированные графы.

Вид ориентированного графа

Разберем другие основные понятия сетевой модели проекта.

Работа – часть производственного или проектного процесса, имеющая начало и окончание в форме количественно описываемого результата, требующая затрат времени и других ресурсов. Работа отражается на диаграмме в форме однонаправленной стрелочной линии. Формой работ мы можем считать операции, мероприятия и действия.

Событие – факт завершения работ, результат которых необходим и достаточен для начала реализации следующих операций

Вид события на модели отражается в форме кружков, ромбиков (вехи) или других фигур, внутри которых помещается идентификационный номер события.

Веха представляет собой работу с нулевой продолжительностью и обозначает важное, значимое событие в проекте (например, утверждение или подписание документа, акт окончания или начала проектного этапа и т.п.).

Ожидание – это процедура, которая не потребляет никаких ресурсов, кроме затрат времени. Отображается как линия со стрелкой на конце с отметкой длительности и указанием наименования ожидания.

Фиктивная работа или зависимость – вид технологической и организационной связи работ, не требует никаких усилий и ресурсов, в том числе затрат времени

На сетевой диаграмме показывается как пунктирная стрелка.

Сферы применения

Сетевые методы планирования бизнес-процессов и управления на предприятии пользуются популярностью в различных сферах деятельности. Наибольшее применение они нашли в тех проектах, в которых необходимо сначала придумать и создать новый продукт, а уже только потом предложить его потребителю. К таким сферам бизнеса относятся:

  • НИиОКР;
  • инновационная деятельность;
  • технологическое проектирование;
  • опытное производство;
  • автоматизация бизнес-процессов;
  • тестирование серийных образцов;
  • модернизация оборудования;
  • исследование конъюнктуры рынка;
  • кадровое управление и рекрутинг.

Как выглядит график

Любой привычный нам график представлен кривой, расположенной на плоскости (реже в пространстве). Но вид сетевого плана существенно отличается.

Сетевой график проекта может выглядеть двояко: одна методика предполагает обозначение операций в узлах блок-схемы (ОУ), вторая использует для этого соединительные стрелки (ОС). Гораздо удобнее использовать первый способ.

Операция обозначается круглым или прямоугольным блоком. Стрелки, их соединяющие, определяют взаимосвязи между действиями. Поскольку названия работ могут быть достаточно длинными и объемными, в блоках проставляют номера операций, а к графику составляется спецификация.

Основные правила построения сетевого графика

Итак, основные правила построения сетевого графика сводятся к следующему:

Направление стрелок в сетевом графике следует принимать слева направо.
Форма графика должна быть простой, без лишних пересечений, большинство работ следует изображать горизонтальными линиями.
При выполнении параллельных работ, т.е

если одно событие служит началом двух работ или более, заканчивающихся другим событием, вводится зависимость и дополнительное событие, иначе разные работы будут иметь одинаковый код.
Если те или иные работы начинаются после частичного выполнения предшествующей, то эту работу следует разбить на части.
Если после окончания двух работ А и Б можно начать работу В, а начало работы, Г зависит только от окончания работы А и начало работы Д – от окончания работы Б, то на сетевом графике это изображается с помощью зависимостей.
При изображении поточных работ особое внимание уделяется правильной разбивке работ на захватки и выявлению взаимосвязи смежных работ.
Укрупнение сетей производится с соблюдением следующих правил:
группа работ на сетевом графике может изображаться как одна работа, если в этой группе имеется одно начальное и одно конечное событие;
укрупнять в одну работу следует только такие работы, которые закреплены за одним исполнителем (бригадой, участком и т.д.);
в укрупненную сеть нельзя вводить новые события, которых не было на более детальном графике до укрупнения;
наименование работ в укрупненном графике должно быть увязано с наименованием укрупняемых работ;
коды событий, которые сохраняются в укрупненном графике, должны быть такими же, как и в детальном графике.

При построении сетевого графика могут быть следующие ошибки. В сетевом графике не должно быть «тупиков», «хвостов» и «циклов»

«Тупик» — событие (кроме завершающего), из которого не выходит ни одна работа, «хвост» — событие (кроме исходного), в которое не входит ни одна работа, «цикл» — замкнутый контур, в котором работы возвращаются к тому событию, из которого они вышли.
Изображение поставок и других внешних работ осуществляется следующим образом. Работы, которые предшествуют выполнению тех или иных работ сетевого графика, но организационно решаются на другом уровне, называются внешними работами. К внешним работам можно отнести поступления технической документации, поставку материалов или оборудования, завоз строительных машин и т.д. Обычно такие работы графически выделяются, например, утолщенной стрелкой с двойным кружком.
Нумерация (кодирование) событий должна соответствовать последовательности работ во времени, т.е. предшествующим событиям присваиваются меньшие номера. Нумерацию событий рекомендуется производить только после окончательного построения сети и вести от исходного события, которому присваивается нулевой или первый номер. Последующее событие нельзя нумеровать, если не пронумеровано предшествующее ему событие. Кодирование можно вести горизонтальным или вертикальным методом. При горизонтальном методе события кодируют слева направо по прямым до первого пересечения работ. При вертикальном способе нумерацию начинают сверху вниз и снизу вверх с учетом условия: последующее событие получает номер после предыдущего.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector