Сравните 2 cpu
Содержание:
- Процессор для проектирования
- Инструментарий и методика тестирования
- Эволюция
- Производство
- Процессор для монтажа видео
- Основные разработчики
- Отличие процессоров друг от друга
- Что такое процессор
- Как он работает
- Бенчмарки
- Рейтинг процессоров 2020: премиальные камни
- Как он выглядит
- Процессор для игр
- Общий рейтинг
- Откуда ноги растут
Процессор для проектирования
Со сложным проектированием все совершенно иначе. Тут важным звеном является видеокарта для ускорения рендеринга (прокрутки) 3D-моделей в реальном времени. Без нее будет очень туго и бюджетной игровой моделью тут не обойтись, придется вложиться во что-то профессиональное из серий Quadro или FirePro (порядка 1000$ и дороже). Обязательно ознакомьтесь с системными требованиями вашего комплекса автоматизированного проектирования и советами пользователей на форуме.
Из оставшегося бюджета сначала подбирайте по минимуму все остальное, включая необходимый объем оперативки, а остаток вложите в процессор. Оптимальнее всего будет тут сэкономить и взять многопоточный Ryzen 8/16 или даже 6/12, этого наверняка будет достаточно.Процессор AMD Ryzen 5 Matisse
В игры на профессиональной видеокарте вы все равно играть не сможете, она для этого совершенно не подходит и не обеспечит комфортную частоту кадров. Но тут есть несколько выходов – отдельный ПК для игр (если вы достаточно обеспечены), игровая консоль (полная отвязка от ПК) или установка второй игровой видеокарты (желательно от того же разработчика, что и профессиональная). В последнем случае убедитесь, что ваше приложение позволяет выбрать видеокарту, которую вы хотите использовать для ускорения.
Идеально, если вы сможете использовать игровую видеокарту и для работы, чтобы не покупать профессиональную, поэтому серьезно отнеситесь к этому вопросу и все хорошо разузнайте о вашем ПО, лучше проконсультироваться со службой поддержки.
Если выяснится, что игровой видеокарты вам достаточно, то тут можно подумать и о процессоре. Если бюджет позволит, то можно взять что-то от Intel (6-8 ядер) для достижения максимального FPS в играх.
Инструментарий и методика тестирования
Обычно для тестирования процессоров применяется комплексная методика, определяющая быстродействие ЦП в следующих типах приложений:
- Работа в трёхмерных пакетах (Solid Works, Maya и т.д.)
- Применение математического аппарата ЦП в сценах финального рендеринга (3DS Max, Maya, Light Wave и проч.)
- Операции архивирования (Winrar, 7zip).
- Кодирование аудиофайлов.
- Задачи компиляции ПО высокого уровня.
- Математические расчёты (MatLAB, Solid Works, Mapple и т.д.)
- Программы растровой и векторной графики.
- Программы кодирования видео.
- Работа с офисным ПО.
- Использование кроссплатформенных пакетов (например, Java).
Сравнение процессоров может базироваться и на других методиках: иногда в список тестов добавляют тесты на мультизадачность, то есть способность выполнять несколько задач из перечисленных одновременно, а также тесты в играх.
Эволюция
От самого первого созданного вычислительного устройства до современных многоядерных монстров эволюция процессоров продвигалась по нескольким основным путям:
- увеличение количества транзисторов вследствие плотности их расположения при изготовлении;
- увеличение тактовой частоты ядер;
- увеличение количества ядер в одном корпусе;
- увеличение сверхоперативной памяти.
Если описать эволюцию очень грубо, то можно утверждать, что рост производительности процессоров происходил из-за одновременного уменьшения и уплотнения составных частей. Буквально 40 лет назад самые мощные модели были гораздо слабее современных офисных вариантов, при этом они уменьшились в разы, стали отдавать гораздо меньше тепла и потреблять электричества.
Производство
Можно смело заявлять, что процессоры делаются из обыкновенного песка. Дело в том, что песок — идеальный источник кремния, из которого и состоят ядра процессора. С помощью доменных печей и ряда химических реакций добывается кремний с чистотой 99,9999999%. Он заливается в специальную форму, после остывания получается кремниевый цилиндр весом около центнера и размером с человека. С помощью специальной резки этот цилиндр нарезается на тончайшие диски диаметром около 50 см.
Эти диски полируются до зеркального блеска, затем с помощью мощного пучка света и хорошей линзы на поверхности создается структура процессора. На нее сверху с помощью специальных веществ наращиваются транзисторы, о которых мы говорили ранее. Транзисторы — полупроводниковые элементы, из которых состоят ядра. Здесь нужно упомянуть такое определение, как техпроцесс. Он стал одним из путей эволюции процессора. Техпроцесс — толщина создаваемых транзисторов. Чем она меньше, тем больше транзисторов влезет в одно ядро, тем больше данных они могут обработать.
Современные процессоры создаются по техпроцессу 14 нм, в 2019 анонсировано появление техпроцесса 10 нм. После наращивания транзисторов нужное количество ядер помещается в корпус, который в итоге видит потребитель.
Процессор для монтажа видео
Для монтажа видео и конечного рендеринга (публикации проекта) главным является количество потоков. И здесь процессорам Ryzen от AMD нет равных, любой сможет позволить себе модель 8/16 или более. Как вариант минимум при очень ограниченном бюджете можно даже брать 6/12. В любом случае вы получите очень выгодное соотношение цена/производительность.Процессор AMD Ryzen 7 Matisse
Если, помимо монтажа видео, вы еще хотите играть в игры, то в этом плане процессоры Ryzen будут похуже, так как с ними FPS ниже чем с Intel. Улучшить ситуацию поможет модель с более высокой частотой, а также разгон и более быстрая память. Но, если вы хотите получить максимум и в играх и в монтаже видео, то лучше обзавестись процессором Intel начиная с десятого поколения, они все многопоточные, но стоят дороже аналогов от AMD.
При этом не стоит забывать, что для комфортного рендеринга эффектов в реальном времени (в предпросмотре при монтаже) и рендеринга проекта на выходе нужна игровая видеокарта среднего или хотя бы начального класса. Она ускоряет рендеринг на порядок и без нее просто немыслимо заниматься даже любительским монтажом видео. Ну а для игр – чем мощнее видеокарта, тем лучше. Учтите это при выборе процессора, чтобы вашего бюджета хватило еще и на видеокарту.
Основные разработчики
На сегодняшний день основные производители — Intel и AMD. Рядом с ними притаился ARM, который создает процессоры для устройств производства Apple Inc. Последний рассматривать не будет, так как модули процессора имеют назначение для конкретных компьютеров и программного обеспечения. Если возникла необходимость выбора процессора для своего компьютера, то нужно остановиться на первых двух.
Сравнение Intel и AMD
Доступное простому пользователю сравнение процессоров будет представлено, как удобная таблица.
Характеристика | Intel | AMD |
---|---|---|
Разгон | Возможность либо отсутствует, либо разгон слабо повышает производительность. В противовес этому – высокие характеристики «из коробки». | Данные процессоры – неоспоримые лидеры в категории разгона. |
Многозадачность | Буквально созданы для программ, поддерживающих распределение вычислений на все ядра одновременно. | Заточены под работу на одном ядре. Программы, которые используют только одно ядро, здесь будут работать гораздо эффективнее. |
Нагрев и энергоэффективность | Более оптимизированные параметры, меньше греются, больше КПД. | Требуют хорошее охлаждение, потребляют больше электроэнергии, особенно если разогнаны. |
Стоимость или назначение | Для дома: В большинстве слишком дорогие для обычного домашнего пользования. Присмотритесь к линейке процессоров AMD. Для игр: для недорогой игровой системы прекрасно подойдут Core i3 и Core i5, в том ценовом сегменте обгоняя по показателям AMD. Для вычислительной работы: для мощной системы хорошо подойдут Core i7-3770K, или очень дорогой и производительный Core i7-3970X с хорошим задатком на будущее. | Для дома: хорошая стоимость для нетребовательной домашней системы, которая прекрасно справится с повседневными задачами. Для игр: в совокупности с грамотным разгоном и хорошим охлаждением подходит для игр. Для дешевой игровой системы хорошо подойдет FX-6300. Для вычислительной работы: для бюджетной системы подойдет FX-8350. |
Общий вывод: для различных задач предназначены и различные процессоры. AMD имеют меньшую стоимость, возможность оверклокинга до огромных тактовых частот. Их бюджетные варианты очень хорошо подойдут для домашних маломощных систем
Если же бюджет выше 150 долларов, стоит обратить внимание на 64-битные Интел процессоры, в данном ценовом сегменте они значительно превосходят по характеристикам своих конкурентов. Выбирайте x64-разрядный вариант для достижения наибольшей производительности
Не стоит забывать, что ЦПУ фирмы Интел — основные варианты для ноутбуков. Они устанавливаются ввиду хорошей энергоэффективности и малой теплоотдачи, поэтому процессоры Intel подходят для ноутбуков.
Отличие процессоров друг от друга
Устройство и производство всех процессоров практически идентично за исключением фирменных технологий, техпроцесса и прочих патентных тонкостей, которые потребителю не нужны. Потребителя интересует, чем отличаются процессоры фактически, по типам и назначению:
- Процессоры отличаются фирмой-производителем. Есть конкуренция — есть развитие продукта и регулирование цены. Процессора визуальные характеристики опустим, они бесполезны.
- Отличаются типом установки (это отсылка к сокету). Обычно различие наблюдается у разных производителей, подробнее поговорим ниже.
- Есть процессоры для повседневных задач — браузер, документы, кино. Чуть более мощные берут пользователи, желающие поиграть в более-менее современные игры на средних или низких настройках. Игровые системы имеют многоядерные и высокочастотные процессоры, которые помогают видеокарте обрабатывать динамические визуальные сцены в играх. Людям, которые работают в программах, где происходят колоссальные вычисления, требуются невероятно мощные модули, которые потребляют огромное количество электроэнергии и требуют специального охлаждения.
- Современные процессоры имеют архитектуру х64, 32 уже редко встречается, однако, это тоже повод найти отличия в возможностях и производительности.
- Сравнить процессоры можно по конкретным задачам — математическим, графическим и прочим.
- Они могут иметь интегрированную графику — идеальное решение для ноутбуков.
Что такое процессор
Это упрощенное название, которое привычнее употреблять в повседневном общении. Его правильное название звучит, как Центральное Процессорное Устройство, он же ЦПУ. Происходит от английского выражения Central Processing Unit или сокращенно CPU.
Центральный процессор — уникальная аппаратная составная часть компьютера, многоцелевое устройство, которое предназначено для выполнения кода программ. Код размещается в его собственной памяти. Работа приложений в операционной системе основана на выполнении различных команд и вычислении определенных данных. Задача ЦПУ — обрабатывать информацию, сопоставлять с ней конкретные команды. Запуск и работа десятков и сотен исполняемых файлов, невообразимые по количеству и объемам вычисления, обработка миллионов файлов весом в сотни гигабайт — лишь поверхностный список того, что он делает на компьютере. Таким образом, процессор — мозг, вычислительная сила вашей машины, которая также координирует работу остального железа.
Как он работает
Несмотря на достаточно сложное и ювелирное устройство этого модуля, его работа вполне понятна пользователю, который решил в этом разобраться. Постараемся изложить принцип работы и назначение процессора понятным для большинства языком, упуская профессиональные термины и значения:
- На невидимом для нас уровне все действия, которые происходят во время активности программы, сводятся к банальной математике чисел, чаще всего это сложение и умножение, сравнение. Это условные обозначения, но они раскрывают суть процессов, которые происходят в модуле при вычислениях.
- Для выполнения любого процесса необходима инструкция, которая имеет в себе данные о протекании вычислений.
- Всей работой управляет дешифратор. При первом такте работы он загружает в сверхоперативную память необходимые данные. Вторым циклом он превращает эти данные в набор понятных для транзисторов команд, которые принимаются за вычисления, записывая результат в тот же кэш. Третий цикл запускает выполнение определенной инструкции, которая выводит в программу обработанные данные, а ядрам дает новую задачу.
- Больше ядер, кэша и частоты — больше обрабатываемых данных, больше открытых программ, больше скорость их работы как по отдельности, так и при суммарной нагрузке.
- При проведении вычислений ядра имеют свойство нагреваться. Для этого обязательно нужен активный куллер или пассивный радиатор. Во избежание сгорания модуля он имеет функцию «троттлинг процессора» — дешифратор начинает пропускать рабочие такты, уменьшая количество проводимых операций. Меньше вычислений — меньше температура, но и на производительность сильно влияет.
- Также не стоит забывать о битности. Старые поколения имеют значение 32, более современные x64. 32-битный процессор имел ограниченную вычислительную мощность, так как мог работать с оперативной памятью объемом до 4 гигабайт. Процессор 64-битный обошел это ограничение, получив в несколько раз возросшую производительность в сравнении со старым поколением. Требуется соответственно 64-разрядная операционная система.
Бенчмарки
Начнём с Cinebench R20. 10400 только на 50% опережает 10100. Это ожидаемо, так как Core i5 содержит на 50% больше ядер и тактовые частоты примерно одинаковые. При переходе с 10400 на 10600K прирост производительности до 13%, за это отвечает тактовая частота. Поскольку процессор K разгоняется, разница может быть и больше.
Прирост составляет почти 40% при переходе с 10600K на 10700K за счёт увеличения количества ядер на треть. Тактовая частота выше примерно на 6%. 10900K ещё быстрее примерно на 29%, хотя количество ядер выросло на 25%, а частота почти прежняя.
Что касается одноядерной производительности, она наибольшая у 10900K и на 7% превосходит 10700K, на 14% 10600K. 10100 и 10400 примерно на одном уровне.
Наибольший прирост производительности наблюдается в тестах сжатия в файловом менеджере 7-Zip при переходе с 4-ядерного Core i3-10100 на 6-ядерный 10400. Это закономерно, поскольку прирост ядер тоже наибольший. 10400 на 55% быстрее чем 10100, 10600K ещё на 8% быстрее.
30% составляет прирост в производительности между 10600K и 10700K, что не особо много. Только 16% между 10700K и 10900K при разнице в цене 30%.
Процессор Intel Core i7-10700K
В плане разархивирования производительность лучше, поскольку здесь можно задействовать Hyper-Threading. В результате 10900K на 36% быстрее по сравнению с 10700K при разнице в цене 30%.
Для любых серьёзных задач рендеринга следует избегать Core i3. Если потратить чуть больше на Core i5-10400, вы получите производительность на 50% выше. Сам процессор может быть также на 50% дороже, но не весь компьютер. В реальности разница составляет примерно $50 и это делает 10400 намного более привлекательной покупкой для рендеринга.
Разница между 10400 и 10600K снова очень небольшая, по крайней мере изначально. Если вы собрались покупать 10600K, нужно разогнать его, иначе лучше сэкономить $70-$80 и купить заблокированный 10400. В идеальном случае для нагрузки подобного рода подойдут процессоры 10700K или 10900K, если выбирать среди моделей Intel. 10700K имеет преимущество в производительности на 37% над 10600K, тогда как 10900K ещё на 33% быстрее.
Компиляция кода напоминает тест Blender. Разница в производительности между 10100 и 10400 составляет 50%. От 10600K до 10700K прирост составляет 30%, ещё столько же до 10900K.
Разница менее предсказуемая при производстве видео. Здесь Core i3-10100 проявляет себя вполне неплохо, по крайней мере при редактировании. 10400 только на 15% быстрее, 10600K всего на несколько процентов превосходит заблокированную модель Core i5. Значительный прирост есть у 10700K, но потом всего несколько процентов при переходе на 10900K. В этом приложении 8 ядер и 16 потоков достаточно.
Ещё более стабильное масштабирование наблюдается в Adobe Premiere Pro. Здесь по мере увеличения количества ядер производительность растёт соответственно. Например, при переходе между 10100 и 10400 скорость увеличилась на 25%, на 16% между 10700K и 10900K.
По этой причине не ожидалось увидеть 47% разницы между Core i3-10100 и Core i9-10900K. Core i9 обладает более высокой тактовой частотой и кешем L3.
В After Effects результаты похожи на те, которые ожидали увидеть в Photoshop. 10900K на 35% опережает 10100, хотя 10700K и 10600K быстрее только на 20%. Интересно увидеть одинаковый результат у 10600K и 10700K, тогда как 10900K примерно на 13% быстрее. В этом наверняка виноваты более высокие частоты.
Рейтинг процессоров 2020: премиальные камни
AMD Ryzen 7 3700X, intel Core i7-9700K, i9-9900KF
Если хочется купить процессор и забыть об апгрейде на много лет, то придется существенно доплатить. Мы считаем, что в премиальном сегменте первый процессор, который стоит вашего внимания — это Ryzen 7 3700X. Это 8 ядерный и 16 поточный монстр, который при многопоточных вычислениях многим моделям даст фору. В простых задачах он не сильно выделяется даже по сравнению с Ryzen 5 3600, но в некоторых требовательных играх показывает результаты на 20-25% лучше. Например, в Battlefield V или Watch Dogs 2. Но вы же не будете играть только в эти игры, верно? Поэтому данный камень оценят, прежде всего, те пользователи, которые помимо игр, проводят много времени в тяжелых программах.
Ситуация аналогичная с Ryzen 7 2700, который выделяется только большой вычислительной мощностью при всех задействованных ядрах и потоках. Тем не менее, это также отличное решение и для игр.
Если процессор берется исключительно под игры и важен лишь счетчик кадров в секунду, то придется доплатить до Intel Core i7-9700K, который на 10-15% мощнее предыдущей модели. Однако, как и со всеми остальными процессорами с индексом K на конце, данное сравнение справедливо только, когда камень находится в разгоне. Минуса у данной модели всего два. Первый — всего лишь 8 потоков, которых в будущем может быть мало. Впрочем, это замечание характерно практически для всех моделей от компании Intel. Второй — огромное тепловыделение, из-за которого придется покупать очень хорошую систему охлаждения.
Если вам и этого мало, то придется доплачивать еще. И, как обычно, в премиальном сегменте уровень вложений не всегда соответствует полученному профиту. Лучший процессор для игр в 2020 году это определенно i9-9900K. Либо его аналог с приставкой F на конце, который не имеет встроенной графики. Он, конечно, дешевле полноценной версии, но всё еще очень дорогой для среднестатистического геймера.
В целом, это тот же i7-9700K, только обладает данная модель 16 потоками, что позволит в будущем избежать проблем с фризами, когда процессор загружается на 100%. Это, конечно, не самый мощный процессор в мире, но этого будет достаточно для любых игр. Все, что находится далее — избыточно, на наш взгляд, для современного гейминга, и нет смысла покупать камень с 12, 16 и большим количеством ядер. Большая часть возможностей ЦПУ в таком случае не будет задействована.
Как он выглядит
Это небольшой квадратный модуль, который устанавливается в специальный разъем материнской платы. Пользователи, которые первый раз видят процессор, удивляются его неожиданно маленькому размеру — площадью он всего несколько квадратных сантиметров. На его поверхности чаще всего нанесен логотип производителя вместе с его названием. Некоторые модели имеют выгравированные или нанесенные краской технические характеристики.
Сверху него установлен вентилятор, который предназначен для охлаждения модуля во время работы. Для улучшения теплоотвода также может быть установлена система пассивного охлаждения в виде радиаторов.
Процессор для игр
Я уже говорил выше о том, что для игр не особо нужна многопоточность, лучше отдать предпочтение количеству физических ядер. Также сказал, что тесты процессоров в играх можно найти на YouTube, чтобы при достаточно мощной видеокарте производительность не уперлась в процессор.
Здесь добавлю, что до сих пор в играх лучше показывают себя процессоры Intel, так как у них выше производительность на ядро, что важно для игр, не умеющих достаточно хорошо использовать многопоточность. Оптимальным выбором здесь будет 8-ядерный процессор Core i7 или i5, как вариант минимум это 6 ядер, так как 4 ядра для игр на сегодня уже слишком мало
А вот частоты вполне достаточно 4 ГГц, но если будет выше, хуже не будет, смотрите по своим финансовым возможностям.Процессор Intel Core i5 Comet Lake
Не стоит забывать, что для игр очень важна видеокарта, так что вкладывайтесь в нее по максимуму, а процессор уже выбирайте по остаточному принципу – если хватит на 8-ядерник, то отлично, если нет берите 6-ядерник, все будет норм. В крайнем случае, для игрового ПК начального класса, хватит даже многопоточного i3 (4/8). Более мощные многопоточные процессоры Intel (6/12, 8/16) есть смысл брать, если помимо игр вы увлекаетесь еще и монтажом видео.
Общий рейтинг
№ | Процессор | Тип | Сокет | Кол-во ядер | Макс. частота | AskGeek Score |
---|---|---|---|---|---|---|
1 | AMD Ryzen Threadripper PRO 3995WX | Desktop | TR4 | 64 | 4.2 GHz | 86.6 |
2 | Intel Xeon Platinum 8170 | Server | FCLGA3647 | 26 | 3.70 GHz | 85.8 |
3 | AMD Ryzen 9 5950X | Desktop | AM4 | 12 | 4.9 GHz | 82.2 |
4 | Intel Xeon Gold 6142 | Server | FCLGA3647 | 16 | 3.70 GHz | 81.8 |
5 | AMD Ryzen 9 5900X | Desktop | AM4 | 12 | 4.8 GHz | 78.0 |
6 | AMD Ryzen Threadripper PRO 3975WX | Desktop | TR4 | 32 | 4.2 GHz | 73.8 |
7 | AMD EPYC 7742 | Server | SP3 | 64 | 3.4 GHz | 71.8 |
8 | Intel Xeon Gold 6146 | Server | FCLGA3647 | 12 | 4.20 GHz | 71.7 |
9 | AMD EPYC 7702 | Server | SP3 | 64 | 3.35 GHz | 70.6 |
10 | Intel Core i9-10900K | Desktop | FCLGA1200 | 10 | 5.30 GHz | 70.2 |
11 | AMD Ryzen 7 5800X | Desktop | AM4 | 8 | 4.7 GHz | 69.5 |
12 | Intel Core i9-10900KF | Desktop | FCLGA1200 | 10 | 5.30 GHz | 69.3 |
13 | Intel Xeon Gold 6154 | Server | FCLGA3647 | 18 | 3.70 GHz | 68.9 |
14 | AMD EPYC 7401 | Server | TR4 | 24 | 3 GHz | 67.0 |
15 | AMD Ryzen 9 3900XT | Desktop | AM4 | 12 | 4.7 GHz | 66.5 |
16 | Intel Xeon Gold 6144 | Server | FCLGA3647 | 8 | 4.20 GHz | 66.5 |
17 | Intel Core i7-10700 | Desktop | LGA 1200 | 8 | 4.80 GHz | 66.1 |
18 | AMD Ryzen Threadripper 3990X | Desktop | sTRX4 | 64 | 4.3 GHz | 65.2 |
19 | Intel Core i9-10900 | Desktop | FCLGA1200 | 10 | 5.20 GHz | 65.0 |
20 | Intel Core i7-1065G7 | Mobile | FCBGA1526 | 4 | 3.90 GHz | 63.9 |
21 | Intel Core i9-10900F | Desktop | FCLGA1200 | 10 | 5.20 GHz | 63.5 |
22 | Intel Xeon E5-2696 v4 | Server | 22 | 3.7 GHz | 63.4 | |
23 | Intel Xeon Gold 6136 | Server | FCLGA3647 | 12 | 3.70 GHz | 63.4 |
24 | Intel Core i9-7980XE | Desktop | FCLGA2066 | 18 | 4.20 GHz | 63.1 |
25 | AMD Ryzen 9 PRO 3900 | Desktop | AM4 | 12 | 4.3 GHz | 62.2 |
26 | AMD Ryzen Threadripper 3970X | Desktop | sTRX4 | 32 | 4.5 GHz | 62.1 |
27 | Intel Core i5-1035G7 | Mobile | FCBGA1526 | 4 | 3.70 GHz | 62.0 |
28 | Intel Xeon E5-2696 v2 | Server | LGA2011 | 12 | 3300 MHz | 62.0 |
29 | Intel Core i7-10700K | Desktop | FCLGA1200 | 8 | 5.10 GHz | 61.8 |
30 | Intel Xeon Gold 6140 | Server | FCLGA3647 | 18 | 3.70 GHz | 61.7 |
31 | Intel Xeon E5-2695 v4 | Server | FCLGA2011-3 | 18 | 3.30 GHz | 61.6 |
32 | AMD Ryzen Threadripper PRO 3955WX | Desktop | TR4 | 16 | 4.3 GHz | 61.4 |
33 | Intel Core i9-9990XE | Desktop | FCLGA2066 | 14 | 5.10 GHz | 61.3 |
34 | Intel Core i7-10700KF | Desktop | FCLGA1200 | 8 | 5.10 GHz | 60.9 |
35 | AMD EPYC 7502 | Server | SP3 | 32 | 3.35 GHz | 60.3 |
36 | AMD Ryzen Threadripper 3960X | Desktop | sTRX4 | 24 | 4.5 GHz | 60.1 |
37 | Intel Xeon Gold 6130T | Server | FCLGA3647 | 16 | 3.70 GHz | 59.9 |
38 | AMD Ryzen 9 5900HX | Laptop | FP6 | 8 | 4.6 GHz | 59.0 |
39 | Apple M1 | Desktop | 8 | 3.20 GHz | 58.7 | |
40 | Intel Xeon E3-1285 v6 | Server | FCLGA1151 | 4 | 4.50 GHz | 58.7 |
41 | AMD Ryzen 9 5900HS | Laptop | FP6 | 8 | 4.6 GHz | 58.6 |
42 | AMD Ryzen 7 3800XT | Desktop | AM4 | 8 | 4.7 GHz | 58.6 |
43 | Intel Xeon W-1290P | Workstation | FCLGA1200 | 10 | 5.30 GHz | 58.4 |
44 | AMD Ryzen 5 5600X | Desktop | AM4 | 6 | 4.6 GHz | 58.3 |
45 | Intel Xeon Gold 6126 | Server | FCLGA3647 | 12 | 3.70 GHz | 57.9 |
46 | Intel Xeon Gold 6130 | Server | FCLGA3647 | 16 | 3.70 GHz | 57.4 |
47 | Intel Xeon E5-2699 v4 | Server | FCLGA2011-3 | 22 | 3.60 GHz | 57.2 |
48 | AMD Ryzen Threadripper PRO 3945WX | Desktop | TR4 | 12 | 4.3 GHz | 57.1 |
49 | Intel Xeon E5-1680 v4 | Server | FCLGA2011-3 | 8 | 4.00 GHz | 57.0 |
50 | Intel Core i7-10700F | Desktop | FCLGA1200 | 8 | 4.80 GHz | 56.5 |
Откуда ноги растут
Довольно часто в интернете можно встретить споры о том, что «Intel тащат за счет большей частоты ядер». Иными словами, частотный параметр ставится во главу стола, а остальные нюансы (количество потоков, размер кэша, работа с определенными инструкциями и техпроцесс) почему-то забываются.
Примерно до начала 2000‑х годов подобное сравнение имело место быть, поскольку характеристики центрального чипа и его скорость упирались именно в частоту. Достаточно вспомнить следующие названия:
- Pentium 133 и 333;
- Pentium 800 и т.д.
А потом ситуация резко изменилась, поскольку разработчики стали уделять больше времени строительству внутренней архитектуры чипов, добавляя кэш-память, поддержку новых инструкций, способов вычисления и прочих элементов, которые увеличивают производительность без повышения той самой частоты.
- кэш-память;
- частота шины данных;
- разрядность.
Т.е. определить возможности чипа, опираясь на один лишь частотный потенциал, стало практически невозможно.