Python урок 4. списки или массивы в питоне
Содержание:
- Присваивание не копирует массивы в Python
- Ways to print NumPy Array in Python
- Syntax to Create an Array in Python
- Операции со срезами matrix в Python
- Создание списков на Python
- Перестройка массива
- Массив нарезки
- Из списка в массивы
- Часть I: Коллекции: Списки / массивы
- Начало работы с методами сортировки Pandas ↑
- NumPy N-мерный массив
- Функции для создания массивов
- 2.4.5. Двумерные массивы¶
- Traverse an Array
- 2.4.4. Ввод-вывод массива¶
- Создание, вывод и ввод матрицы в Питоне
Присваивание не копирует массивы в Python
Итак, простое присваивание никаких копий массива не выполняет, и это первое, что стоит уяснить. Может показаться, что это всего лишь прихоть создателей Python и NumPy, но всё не так просто. Если бы ситуация обстояла иначе, мы бы работали с памятью напрямую, а отсутствие автоматического копирования во время присваивания — совсем небольшая плата за лёгкость и простоту языка программирования Python.
Давайте приведём ещё парочку примеров на эту тему:
Обратите внимание, что массивы a и b в действительности являются одним и тем же массивом с такими же данными и типом данных
Таким образом, у нас есть массив b и массив a, но нельзя забывать о том, что это, по сути, один и тот же массив.
Ways to print NumPy Array in Python
As mentioned earlier, we can also implement arrays in Python using the NumPy module. The module comes with a pre-defined array class that can hold values of same type.
These NumPy arrays can also be multi-dimensional. So, let us see how can we print both 1D as well as 2D NumPy arrays in Python.
Using print() method
Similar to the case of arrays implemented using lists, we can directly pass NumPy array name to the method to print the arrays.
import numpy as np arr_2d = np.array(,,]) arr = np.array() print("Numpy array is: ", arr) #printing the 1d numpy array print("Numpy 2D-array is: ", arr_2d) #printing the 2d numpy array
Output:
Numpy array is: Numpy 2D-array is: ]
Here, and are one 1D and one 2D NumPy arrays respectively. We pass their names to the method and print both of them. Note: this time also the arrays are printed in the form of NumPy arrays with brackets.
Using for loops
Again, we can also traverse through NumPy arrays in Python using loop structures. Doing so we can access each element of the array and print the same. This is another way to print an array in Python.
Look at the example below carefully.
import numpy as np arr = np.array() arr_2d = np.array(,,,]) #printing the numpy array print("The Numpy Array is : ") for i in arr: print(i, end = ' ') #printing the numpy 2D-Array print("\nThe Numpy 2D-Array is:") for i in arr_2d: for j in i: print(j, end=" ") print()
Output:
The Numpy Array is : 11 22 33 44 The Numpy 2D-Array is: 90 20 76 45 44 87 73 81
Here also we print the NumPy array elements in our desired way(without brackets) by accessing the elements of the 1D and 2D array individually.
Syntax to Create an Array in Python
You can declare an array in Python while initializing it using the following syntax.
arrayName = array.array(type code for data type, )
The following image explains the syntax.
Array Syntax
- Identifier: specify a name like usually, you do for variables
- Module: Python has a special module for creating array in Python, called «array» – you must import it before using it
- Method: the array module has a method for initializing the array. It takes two arguments, type code, and elements.
- Type Code: specify the data type using the type codes available (see list below)
- Elements: specify the array elements within the square brackets, for example
Операции со срезами matrix в Python
Часто мы работаем не с целым массивом, а с его компонентами. Эти операции выполняются с помощью метода слайс (срез). Он пришел на замену циклу for, при котором каждый элемент подвергался перебору. Метод позволяет получать копии matrix, причём манипуляции выполняются в виде . В данном случае start — индекс элемента, с которого берётся отсчёт, stop — последний элемент, step — размер шага или число пропускаемых значений элемента при каждой итерации. Изначально start равен нулю, stop — индексу последнего элемента, step — единице. Если выполнить операции без аргументов, копирование и добавление списка произойдёт полностью.
Допустим, имеем целочисленный массив otus = . Для копирования и вывода используем otus. В итоге произойдёт вывод последовательности . Но если аргументом станет отрицательное значение, допустим, -2, произойдёт вывод уже других данных:
otus-2]; //4
Возможны и другие операции. Например, если добавить ещё одно двоеточие, будет указан шаг копируемых элементов. Таким образом, otus позволит вывести матрицу .
Если ввести отрицательное значение, к примеру, отсчёт начнётся с конца, и в результате произойдёт вывод . Остаётся добавить, что метод среза позволяет гибко работать с матрицами и вложенными списками в Python.
Хотите узнать гораздо больше? Записывайтесь на курс «Разработчик Python»!
Создание списков на Python
- Создать список можно несколькими способами. Рассмотрим их.
1. Получение списка через присваивание конкретных значений
Так выглядит в коде Python пустой список:
s = # Пустой список |
Примеры создания списков со значениями:
l = 25, 755, -40, 57, -41 # список целых чисел l = 1.13, 5.34, 12.63, 4.6, 34.0, 12.8 # список из дробных чисел l = "Sveta", "Sergei", "Ivan", "Dasha" # список из строк l = "Москва", "Иванов", 12, 124 # смешанный список l = , , , 1, , 1, 1, 1, # список, состоящий из списков l = 's', 'p', 'isok', 2 # список из значений и списка |
2. Списки при помощи функции List()
Получаем список при помощи функции List()
empty_list = list() # пустой список l = list ('spisok') # 'spisok' - строка print(l) # - результат - список |
4. Генераторы списков
- В python создать список можно также при помощи генераторов, — это довольно-таки новый метод:
- Первый простой способ.
Сложение одинаковых списков заменяется умножением:
# список из 10 элементов, заполненный единицами l = 1*10 # список l = |
Второй способ сложнее.
l = i for i in range(10) # список l = |
или такой пример:
c = c * 3 for c in 'list' print (c) # |
Пример:
Заполнить список квадратами чисел от 0 до 9, используя генератор списка.
Решение:
l = i*i for i in range(10) |
еще пример:
l = (i+1)+i for i in range(10) print(l) # |
Случайные числа в списке:
from random import randint l = randint(10,80) for x in range(10) # 10 чисел, сгенерированных случайным образом в диапазоне (10,80) |
Задание Python 4_1:
Создайте список целых чисел от -20 до 30 (генерация).
Результат:
Задание Python 4_2:
Создайте список целых чисел от -10 до 10 с шагом 2 (генерация list).
Результат:
Задание Python 4_3:
Создайте список из 20 пятерок (генерация).
Результат:
Задание Python 4_4:
Создайте список из сумм троек чисел от 0 до 10, используя генератор списка (0 + 1 + 2, 1 + 2 + 3, …).
Результат:
Задание Python 4_5 (сложное):
Заполните массив элементами арифметической прогрессии. Её первый элемент, разность и количество элементов нужно ввести с клавиатуры.
* Формула для получения n-го члена прогрессии: an = a1 + (n-1) * d
Простейшие операции над списками
- Списки можно складывать (конкатенировать) с помощью знака «+»:
l = 1, 3 + 4, 23 + 5 # Результат: # l = |
33, -12, 'may' + 21, 48.5, 33 # |
или так:
a=33, -12, 'may' b=21, 48.5, 33 print(a+b)# |
Операция повторения:
,,,1,1,1 * 2 # , , , , , ] |
Пример:
Для списков операция переприсваивания значения отдельного элемента списка разрешена!:
a=3, 2, 1 a1=; print(a) # |
Можно!
Задание 4_6:
В строке записана сумма натуральных чисел: ‘1+25+3’. Вычислите это выражение. Работать со строкой, как со списком.
Начало программы:
s=input('введите строку') l=list(str(s)); |
Как узнать длину списка?
Перестройка массива
После нарезки данных вам может понадобиться изменить их.
Например, некоторые библиотеки, такие как scikit-learn, могут требовать, чтобы одномерный массив выходных переменных (y) был сформирован как двумерный массив с одним столбцом и результатами для каждого столбца.
Некоторые алгоритмы, такие как рекуррентная нейронная сеть с короткой кратковременной памятью в Keras, требуют ввода данных в виде трехмерного массива, состоящего из выборок, временных шагов и функций.
Важно знать, как изменить ваши массивы NumPy, чтобы ваши данные соответствовали ожиданиям конкретных библиотек Python. Мы рассмотрим эти два примера
Форма данных
Массивы NumPy имеют атрибут shape, который возвращает кортеж длины каждого измерения массива.
Например:
При выполнении примера печатается кортеж для одного измерения.
Кортеж с двумя длинами возвращается для двумерного массива.
Выполнение примера возвращает кортеж с количеством строк и столбцов.
Вы можете использовать размер измерений вашего массива в измерении формы, например, указав параметры.
К элементам кортежа можно обращаться точно так же, как к массиву, с 0-м индексом для числа строк и 1-м индексом для количества столбцов. Например:
Запуск примера позволяет получить доступ к конкретному размеру каждого измерения.
Изменить форму 1D в 2D Array
Обычно требуется преобразовать одномерный массив в двумерный массив с одним столбцом и несколькими массивами.
NumPy предоставляет функцию reshape () для объекта массива NumPy, который можно использовать для изменения формы данных.
Функция reshape () принимает единственный аргумент, который задает новую форму массива. В случае преобразования одномерного массива в двумерный массив с одним столбцом кортеж будет иметь форму массива в качестве первого измерения (data.shape ) и 1 для второго измерения.
Собрав все это вместе, мы получим следующий проработанный пример.
При выполнении примера печатается форма одномерного массива, изменяется массив, чтобы иметь 5 строк с 1 столбцом, а затем печатается эта новая форма.
Изменить форму 2D в 3D Array
Обычно требуется преобразовать двумерные данные, где каждая строка представляет последовательность в трехмерный массив для алгоритмов, которые ожидают множество выборок за один или несколько временных шагов и одну или несколько функций.
Хорошим примером являетсямодель в библиотеке глубокого обучения Keras.
Функция изменения формы может использоваться напрямую, указывая новую размерность. Это ясно с примером, где каждая последовательность имеет несколько временных шагов с одним наблюдением (функцией) на каждый временной шаг.
Мы можем использовать размеры в атрибуте shape в массиве, чтобы указать количество выборок (строк) и столбцов (временных шагов) и зафиксировать количество объектов в 1
Собрав все это вместе, мы получим следующий проработанный пример.
При выполнении примера сначала печатается размер каждого измерения в двумерном массиве, изменяется форма массива, а затем суммируется форма нового трехмерного массива.
Массив нарезки
Все идет нормально; Создание и индексация массивов выглядит знакомо.
Теперь мы подошли к нарезке массивов, и это одна из функций, которая создает проблемы для начинающих массивов Python и NumPy.
Структуры, такие как списки и массивы NumPy, могут быть нарезаны. Это означает, что подпоследовательность структуры может быть проиндексирована и извлечена.
Это наиболее полезно при машинном обучении при указании входных и выходных переменных или разделении обучающих строк из строк тестирования.
Нарезка задается с помощью оператора двоеточия ‘:’ с ‘от’ а также ‘в‘Индекс до и после столбца соответственно. Срез начинается от индекса «от» и заканчивается на один элемент перед индексом «до».
Давайте рассмотрим несколько примеров.
Одномерная нарезка
Вы можете получить доступ ко всем данным в измерении массива, указав срез «:» без индексов.
При выполнении примера печатаются все элементы в массиве.
Первый элемент массива можно разрезать, указав фрагмент, который начинается с индекса 0 и заканчивается индексом 1 (один элемент перед индексом «до»)
Выполнение примера возвращает подмассив с первым элементом.
Мы также можем использовать отрицательные индексы в срезах. Например, мы можем нарезать последние два элемента в списке, начав срез с -2 (второй последний элемент) и не указав индекс «до»; это берет ломтик до конца измерения.
Выполнение примера возвращает подмассив только с двумя последними элементами.
Двумерная нарезка
Давайте рассмотрим два примера двумерного среза, которые вы, скорее всего, будете использовать в машинном обучении.
Разделение функций ввода и вывода
Распространено загруженные данные на входные переменные (X) и выходную переменную (y).
Мы можем сделать это, разрезая все строки и все столбцы до, но перед последним столбцом, затем отдельно индексируя последний столбец.
Для входных объектов мы можем выбрать все строки и все столбцы, кроме последнего, указав ‘:’ в индексе строк и: -1 в индексе столбцов.
Для выходного столбца мы можем снова выбрать все строки, используя ‘:’, и индексировать только последний столбец, указав индекс -1.
Собрав все это вместе, мы можем разделить 3-колоночный 2D-набор данных на входные и выходные данные следующим образом:
При выполнении примера печатаются разделенные элементы X и y
Обратите внимание, что X — это двумерный массив, а y — это одномерный массив
Сплит поезд и тестовые ряды
Обычно загруженный набор данных разбивают на отдельные наборы поездов и тестов.
Это разделение строк, где некоторая часть будет использоваться для обучения модели, а оставшаяся часть будет использоваться для оценки мастерства обученной модели.
Для этого потребуется разрезать все столбцы, указав «:» во втором индексе измерения. Набор обучающих данных будет содержать все строки от начала до точки разделения.
Тестовым набором данных будут все строки, начиная с точки разделения до конца измерения.
Собрав все это вместе, мы можем разделить набор данных в надуманной точке разделения 2.
При выполнении примера выбираются первые две строки для обучения и последняя строка для набора тестов.
Из списка в массивы
В общем, я рекомендую загружать ваши данные из файла с помощью функций Pandas или даже NumPy.
Для примера, смотрите пост:
Как загрузить данные машинного обучения в Python
В этом разделе предполагается, что вы загрузили или сгенерировали свои данные другими способами, и теперь они представлены в виде списков Python.
Давайте посмотрим на преобразование ваших данных в списках в массивы NumPy.
Одномерный список в массив
Вы можете загрузить свои данные или сгенерировать свои данные и иметь доступ к ним в виде списка.
Вы можете преобразовать одномерный список данных в массив, вызвав функцию array () NumPy.
Выполнение примера преобразует одномерный список в массив NumPy.
Двумерный список списков для массива
В машинном обучении более вероятно, что у вас будут двумерные данные.
Это таблица данных, в которой каждая строка представляет новое наблюдение, а каждый столбец — новую особенность.
Возможно, вы сгенерировали данные или загрузили их, используя собственный код, и теперь у вас есть список списков. Каждый список представляет новое наблюдение.
Вы можете преобразовать свой список списков в массив NumPy так же, как описано выше, вызвав функцию array ().
Выполнение примера показывает, что данные успешно преобразованы.
Часть I: Коллекции: Списки / массивы
- В языке Python отсутствует такая структура, как «массив». Для работы с массивами используются списки.
- Cписки — это изменяемые последовательности в отличие от строк.
- Представим строку как объект в памяти, в этом случае, когда над строкой выполняются операции конкатенации и повторения, то сама строка не меняется, но в результате выполнения операции в другом месте памяти создается другая строка.Пример:
Так, например, в Питоне нельзя переприсваивать значение для отдельных символов строки.Программа выдаст ошибку!
s="aaa"; s1="b"; print(s1) |
Изменять строку можно только, работая с ней, как с объектом (метод , например):
s1="breKeKeKeKs"; s1=s1.replace('Ke','XoXo',2) s1 # breXoXoXoXoKeKs |
Начало работы с методами сортировки Pandas ↑
Напоминаем, что DataFrame — это структура данных с помеченными осями для строк и столбцов. Вы можете отсортировать DataFrame по значению строки или столбца, а также по индексу строки или столбца.
И строки, и столбцы имеют индексы, которые представляют собой числовые представления о том, где находятся данные в вашем DataFrame. Вы можете получать данные из определенных строк или столбцов, используя расположение индекса DataFrame. По умолчанию номера индексов начинаются с нуля. Вы также можете вручную назначить собственный индекс.
Подготовка набора данных
В этом уроке будем работать с данными об экономии топлива, собранными Агентством по охране окружающей среды США (EPA) на транспортных средствах, выпущенных в период с 1984 по 2021 год. Набор данных EPA по экономии топлива великолепен, потому что он содержит много различных типов информации, которую вы можете отсортировать, включая текстовую и числовою информацию. Набор данных содержит всего восемьдесят три колонки.
Чтобы продолжить, вам понадобится установленная библиотека Python pandas. Код в этом руководстве был выполнен с использованием pandas 1.2.0 и Python 3.9.1.
Для анализа будем просматривать данные о MPG (миля на галлон) для транспортных средств по маркам, моделям, годам и другим характеристикам транспортных средств. Можно указать, какие столбцы следует читать в DataFrame. Для этого урока вам понадобится только часть доступных столбцов. Вот команды для чтения соответствующих столбцов набора данных по экономии топлива в DataFrame и для отображения первых пяти строк:
>>> import pandas as pd >>> column_subset = >>> df = pd.read_csv( ... "https://www.fueleconomy.gov/feg/epadata/vehicles.csv", ... usecols=column_subset, ... nrows=100 ... ) >>> df.head() city08 cylinders fuelType ... mpgData trany year 0 19 4 Regular ... Y Manual 5-spd 1985 1 9 12 Regular ... N Manual 5-spd 1985 2 23 4 Regular ... Y Manual 5-spd 1985 3 10 8 Regular ... N Automatic 3-spd 1985 4 17 4 Premium ... N Manual 5-spd 1993
Вызывая с URL-адресом набора данных, вы можете загрузить данные в DataFrame. Сокращение количества столбцов приводит к более быстрой загрузке и меньшему использованию памяти. Чтобы еще больше ограничить потребление памяти и быстро почувствовать данные, вы можете указать, сколько строк загружать, используя .
Знакомство с .sort_values()
Для сортировки значений в DataFrame по любой оси (столбцы или строки) используем . Как правило, требуется отсортировать строки в DataFrame по значениям одного или нескольких столбцов:
На рисунке выше показаны результаты использования для сортировки строк DataFrame на основе значений в столбце . Это похоже на то, как вы сортируете данные в электронной таблице с помощью столбца.
Знакомство с .sort_index()
используем для сортировки DataFrame по индексу строки или меткам столбцов. Отличие от заключается в том, что вы сортируете DataFrame на основе индекса строки или имени столбцов, а не значений в этих строках или столбцах:
Индекс строки DataFrame обведен синим на рисунке выше. Индекс не считается столбцом, и обычно у вас есть только один индекс строки. Индекс строки можно рассматривать как номера строк, которые начинаются с нуля.
NumPy N-мерный массив
NumPy — это библиотека Python, которая может использоваться для научных и числовых приложений, а также инструмент для операций с линейной алгеброй.
Основной структурой данных в NumPy является ndarray, который является сокращенным именем для N-мерного массива. При работе с NumPy данные в ndarray просто называются массивом.
Это массив фиксированного размера в памяти, который содержит данные одного типа, такие как целые числа или значения с плавающей запятой.
Доступ к типу данных, поддерживаемому массивом, можно получить через атрибут «dtype» в массиве. Доступ к измерениям массива можно получить через атрибут «shape», который возвращает кортеж, описывающий длину каждого измерения. Есть множество других атрибутов. Узнайте больше здесь:
N-мерный массив
Простой способ создать массив из данных или простых структур данных Python, таких как список, — это использовать функцию array ().
В приведенном ниже примере создается список Python из трех значений с плавающей запятой, затем создается ndarray из списка и осуществляется доступ к форме и типу массивов.
При выполнении примера печатается содержимое ndarray, фигура, которая является одномерным массивом с 3 элементами, и тип данных, который является 64-битной плавающей точкой.
Функции для создания массивов
Есть больше удобных функций для создания массивов фиксированного размера, с которыми вы можете столкнуться или которые вам необходимо использовать.
Давайте посмотрим на несколько. Вы можете увидеть полный список здесь:
Процедуры создания массива
пустой
Функция empty () создаст новый массив указанной формы.
Аргументом функции является массив или кортеж, который определяет длину каждого измерения создаваемого массива. Значения или содержимое созданного массива будут случайными и должны быть назначены перед использованием.
В приведенном ниже примере создается пустой трехмерный массив 3 × 3.
При выполнении примера печатается содержимое пустого массива. Ваше конкретное содержимое массива будет отличаться.
нули
Функция нулей () создаст новый массив указанного размера с содержимым, заполненным нулевыми значениями.
Аргументом функции является массив или кортеж, который определяет длину каждого измерения создаваемого массива.
В приведенном ниже примере создается нулевой двумерный массив размером 3 × 5.
При выполнении примера печатается содержимое созданного нулевого массива.
Ones
Функция ones () создаст новый массив указанного размера с содержимым, заполненным одним значением.
Аргументом функции является массив или кортеж, который определяет длину каждого измерения создаваемого массива.
В приведенном ниже примере создается одномерный массив из 5 элементов.
При выполнении примера печатается содержимое созданного массива.
2.4.5. Двумерные массивы¶
Выше везде элементами массива были числа. Но на самом деле элементами
массива может быть что угодно, в том числе другие массивы. Пример:
a = 10, 20, 30 b = -1, -2, -3 c = 100, 200 z = a, b, c
Что здесь происходит? Создаются три обычных массива , и
, а потом создается массив , элементами которого являются как
раз массивы , и .
Что теперь получается? Например, — это элемент №1 массива
, т.е. . Но — это тоже массив, поэтому я могу написать
— это то же самое, что , т.е. (не забывайте,
что нумерация элементов массива идет с нуля). Аналогично,
и т.д.
То же самое можно было записать проще:
z = , -1, -2, -3], 100, 200]]
Получилось то, что называется двумерным массивом. Его можно себе еще
представить в виде любой из этих двух табличек:
Первую табличку надо читать так: если у вас написано , то
надо взять строку № и столбец №. Например, —
это элемент на 1 строке и 2 столбце, т.е. -3. Вторую табличку надо
читать так: если у вас написано , то надо взять столбец
№ и строку №. Например, — это элемент на 2
столбце и 1 строке, т.е. -3. Т.е. в первой табличке строка — это первый
индекс массива, а столбец — второй индекс, а во второй табличке
наоборот. (Обычно принято как раз обозначать первый индекс и
— второй.)
Когда вы думаете про таблички, важно то, что питон на самом деле не
знает ничего про строки и столбцы. Для питона есть только первый индекс
и второй индекс, а уж строка это или столбец — вы решаете сами, питону
все равно
Т.е. и — это разные вещи, и питон их
понимает по-разному, а будет 1 номером строки или столбца — это ваше
дело, питон ничего не знает про строки и столбцы. Вы можете как хотите
это решить, т.е. можете пользоваться первой картинкой, а можете и второй
— но главное не запутайтесь и в каждой конкретной программе делайте
всегда всё согласованно. А можете и вообще не думать про строки и
столбцы, а просто думайте про первый и второй индекс.
Обратите, кстати, внимание на то, что в нашем примере (массив,
являющийся вторым элементом массива ) короче остальных массивов (и
поэтому на картинках отсутствует элемент в правом нижнем углу). Это
общее правило питона: питон не требует, чтобы внутренние массивы были
одинаковой длины
Вы вполне можете внутренние массивы делать разной
длины, например:
x = , 5, 6], 7, 8, 9], [], 10]]
здесь нулевой массив имеет длину 4, первый длину 2, второй длину 3,
третий длину 0 (т.е. не содержит ни одного элемента), а четвертый длину
1. Такое бывает надо, но не так часто, в простых задачах у вас будут все
подмассивы одной длины.
Traverse an Array
You can traverse a Python array by using loops, like this one:
import array balance = array.array('i', ) for x in balance: print(x)
Output:
300 200 100
Summary:
- An array is a common type of data structure wherein all elements must be of the same data type.
- Python programming, an array, can be handled by the «array» module.
- Python arrays are used when you need to use many variables which are of the same type.
- In Python, array elements are accessed via indices.
- Array elements can be inserted using an array.insert(i,x) syntax.
- In Python, arrays are mutable.
- In Python, a developer can use pop() method to pop and element from Python array.
- Python array can be converted to Unicode. To fulfill this need, the array must be a type ‘u’; otherwise, you will get «ValueError».
- Python arrays are different from lists.
- You can access any array item by using its index.
- The array module of Python has separate functions for performing array operations.
2.4.4. Ввод-вывод массива¶
Как вам считывать массив? Во-первых, если все элементы массива задаются
в одной строке входного файла. Тогда есть два способа. Первый — длинный,
но довольно понятный:
a = input().split() # считали строку и разбили ее по пробелам # получился уже массив, но питон пока не понимает, что в массиве числа for i in range(len(a)): ai = int(ai]) # прошли по всем элементам массива и превратили их в числа
Второй — покороче, но попахивает магией:
a = list(map(int, input().split()))
Может показаться страшно, но на самом деле
вы уже встречали в конструкции
x, y = map(int, input().split())
когда вам надо было считать два числа из одной строки. Это считывает
строку (), разбивает по пробелам (), и превращает
каждую строку в число (). Для чтения массива все то же
самое, только вы еще заворачиваете все это в , чтобы явно
сказать питону, что это массив.
Какой из этих двух способов использовать для чтения данных из одной
строки — выбирать вам, особой разницы нет.
Обратите внимание, что в обоих способах вам не надо знать заранее,
сколько элементов будет в массиве — получится столько, сколько чисел в
строке. В задачах часто бывает что задается сначала количество
элементов, а потом (обычно на следующей строке) сами элементы
Это
удобно в паскале, c++ и т.п., где нет способа легко считать числа до
конца строки; в питоне вам это не надо, вы легко считываете сразу все
элементы массива до конца строки, поэтому заданное число элементов вы
считываете, но дальше не используете:
n = int(input()) # больше n не используем a = list(map(int, input().split()))
Еще бывает, что числа для массива задаются по одному в строке. Тогда вам
проще всего заранее знать, сколько будет вводиться чисел. Обычно как раз
так данные и даются: сначала количество элементов, потом сами элементы.
Тогда все вводится легко:
n = int(input()) a = [] # пустой массив, т.е. массив длины 0 for i in range(n): a.append(int(input())) # считали число и сразу добавили в конец массива
Более сложные варианты — последовательность элементов по одному в
строке, заканчивающаяся нулем, или задано количество элементов и сами
элементы в той же строке — придумайте сами, как сделать (можете подумать
сейчас, можете потом, когда попадется в задаче). Вы уже знаете всё, что
для этого надо.
Как выводить массив? Если надо по одному числу в строку, то просто:
for i in range(len(a)): print(ai])
Если же надо все числа в одну строку, то есть два способа. Во-первых,
можно команде передать специальный параметр ,
который обозначает «заканчивать вывод пробелом (а не переводом строки)»:
for i in range(len(a)): print(ai], end=" ")
Есть другой, более простой способ:
print(*a)
Создание, вывод и ввод матрицы в Питоне
- Таким образом, получается структура из вложенных списков, количество которых определяет количество строк матрицы, а число элементов внутри каждого вложенного списка указывает на количество столбцов в исходной матрице.
Рассмотрим пример матрицы размера 4 х 3:
matrix = -1, , 1, -1, , 1, , 1, -1, 1, 1, -1 |
Данный оператор можно записать в одну строку:
matrix = -1, , 1, -1, , 1, , 1, -1, 1, 1, -1 |
Вывод матрицы можно осуществить одним оператором, но такой простой способ не позволяет выполнять какой-то предварительной обработки элементов:
print(matrix) |
Результат:
Для вывода матрицы в виде таблицы можно использовать специально заготовленную для этого процедуру:
- способ:
1 2 3 4 5 |
def printMatrix ( matrix ): for i in range ( len(matrix) ): for j in range ( len(matrixi) ): print ( "{:4d}".format(matrixij), end = "" ) print () |
В примере i – это номер строки, а j – номер столбца;len(matrix) – число строк в матрице.
способ:
1 2 3 4 5 |
def printMatrix ( matrix ): for row in matrix: for x in row: print ( "{:4d}".format(x), end = "" ) print () |
Внешний цикл проходит по строкам матрицы (row), а внутренний цикл проходит по элементам каждой строки (x).
Для инициализации элементов матрицы случайными числами используется алгоритм:
1 2 3 4 |
from random import randint n, m = 3, 3 a = randint(1, 10) for j in range(m) for i in range(n) print(a) |