Уровни эталонной модели osi

Общая характеристика модели OSI

https://youtube.com/watch?v=DcV3HY6lFP4%3F

В связи с затянувшейся разработкой протоколов OSI, в настоящее время основным используемым стеком протоколов является TCP/IP, разработанный ещё до принятия модели OSI и вне связи с ней.

К концу 70-х годов в мире уже существовало большое количество фирменных стеков коммуникационных протоколов, среди которых можно назвать, например, такие популярные стеки, как DECnet, TCP/IP и SNA. Подобное разнообразие средств межсетевого взаимодействия вывело на первый план проблему несовместимости устройств, использующих разные протоколы. Одним из путей разрешения этой проблемы в то время виделся всеобщий переход на единый, общий для всех систем стек протоколов, созданный с учетом недостатков уже существующих стеков. Такой академический подход к созданию нового стека начался с разработки модели OSI и занял семь лет (с 1977 по 1984 год). Назначение модели OSI состоит в обобщенном представлении средств сетевого взаимодействия. Она разрабатывалась в качестве своего рода универсального языка сетевых специалистов, именно поэтому её называют справочной моделью.В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представления, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень имеет дело с совершенно определенным аспектом взаимодействия сетевых устройств.

Приложения могут реализовывать собственные протоколы взаимодействия, используя для этих целей многоуровневую совокупность системных средств. Именно для этого в распоряжение программистов предоставляется прикладной программный интерфейс (Application Program Interface, API). В соответствии с идеальной схемой модели OSI приложение может обращаться с запросами только к самому верхнему уровню — прикладному, однако на практике многие стеки коммуникационных протоколов предоставляют возможность программистам напрямую обращаться к сервисам, или службам, расположенных ниже уровней. Например, некоторые СУБД имеют встроенные средства удаленного доступа к файлам. В этом случае приложение, выполняя доступ к удаленным ресурсам, не использует системную файловую службу; оно обходит верхние уровни модели OSI и обращается непосредственно к ответственным за транспортировку сообщений по сети системным средствам, которые располагаются на нижних уровнях модели OSI. Итак, пусть приложение узла А хочет взаимодействовать с приложением узла В. Для этого приложение А обращается с запросом к прикладному уровню, например к файловой службе. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата. Но для того, чтобы доставить эту информацию по назначению, предстоит решить еще много задач, ответственность за которые несут нижележащие уровни. После формирования сообщения прикладной уровень направляет его вниз по стеку уровню представления. Протокол уровня представления на основании информации, полученной из заголовка сообщения прикладного уровня, выполняет требуемые действия и добавляет к сообщению собственную служебную информацию — заголовок уровня представления, в котором содержатся указания для протокола уровня представления машины-адресата. Полученное в результате сообщение передается вниз сеансовому уровню, который, в свою очередь, добавляет свой заголовок и т. д. (Некоторые реализации протоколов помещают служебную информацию не только в начале сообщения в виде заголовка, но и в конце в виде так называемого концевика.) Наконец, сообщение достигает нижнего, физического, уровня, который, собственно, и передает его по линиям связи машине-адресату. К этому моменту сообщение «обрастает» заголовками всех уровней.

Физический уровень помещает сообщение на физический выходной интерфейс компьютера 1, и оно начинает своё «путешествие» по сети (до этого момента сообщение передавалось от одного уровню другому в пределах компьютера 1). Когда сообщение по сети поступает на входной интерфейс компьютера 2, оно принимается его физическим уровнем и последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует и обрабатывает заголовок своего уровня, выполняя соответствующие функции, а затем удаляет этот заголовок и передает сообщение вышележащему уровню. Как видно из описания, протокольные сущности одного уровня не общаются между собой непосредственно, в этом общении всегда участвуют посредники — средства протоколов нижележащих уровней. И только физические уровни различных узлов взаимодействуют непосредственно.

Множественный доступ к каналу связи

Предположим, есть какая-то общая среда передачи данных, к которой подключены несколько компьютеров и они начали передавать данные одновременно. Но так как среда передачи данных одна, то данные искажаются и не могут быть прочитаны из среды. Это называется коллизия. Подуровень MAC обеспечивает управление доступом, к разделяемой среде. В один и тот же момент времени, канал связи для передачи данных должен использовать только один отправитель. В противном случае произойдет коллизия и данные искажаются. 

Методы управления доступом: 

  • Рандомизированный метод. Предположим, к среде подключено N устройств в этом случае для передачи данных случайным образом выбирается одно из этих устройств с вероятностью 1/N. Такой подход применяется в технологиях канального уровня изернет и вай-фай. 
  • Определение правил использования среды, например, в технологии Token Ring, данные может передавать только одно устройство, у которого сейчас находится токен. После того как это устройство передало данные, оно передает токен следующему устройству и следующее устройство может передавать данные. Хотя такой подход обеспечивает более эффективное использование полосы пропускания канала связи, но он требует более дорогого оборудования. Поэтому на практике получил распространение рандомизированный подход. 

Раньше было очень много технологий канального уровня, каждая из которых обладала теми или иными преимуществами и недостатками. Однако сейчас в процессе развития остались только две популярные технологии это ethernet и вай-фай. 

Мы рассмотрели канальный уровень, его основные задачи. Выяснили, что канальный уровень может обнаруживать и исправлять ошибки. Спасибо за прочтение статьи, надеемся она была для Вас полезной. 

Расширения модели OSI

Два нижних уровня модели OSI, Физический и Канальный, устанавливают, каким образом несколько компьютеров могут одновременно использовать сеть, чтобы при этом не мешать друг другу.
IEEE Project 802 относился именно к этим двум уровням и привел к созданию спецификаций, определивших доминирующие среды ЛВС.
IEEE, подробно описывая Канальный уровень, разделил его на два подуровня:

  • Управление логической связью (Logical Link Control, LLC) — контроль ошибок и управление потоком данных;

  • Управление доступом к среде (Media Access Control, MAC).
  • Прикладной уровень

  • Представительский уровень

  • Сеансовый уровень

  • Транспортный уровень

  • Сетевой уровень

  • Канальный уровень

  • Управление логической связью (LLC)

  • Управление доступом к среде (MAC)

  • Физический уровень

Управление логической связью

Подуровень Управление логической связью устанавливает канал связи и определяет использование логических точек интерфейса, называемых точками доступа к услугам (service access points, SAP). Другие компьютеры, ссылаясь на точки доступа к услугам, могут передавать информацию с подуровня Управления логической связью на верхние уровни OSI. Эти стандарты определены в категории 802.2.

Управление доступом к среде

Как показано ниже, подуровень Управление доступом к среде — нижний из двух подуровней. Он обеспечивает совместный доступ плат сетевого адаптера к Физическому уровню . Подуровень Управление доступом к среде напрямую связан с платой сетевого адаптера и отвечает за безошибочную передачу данных между двумя компьютерами сети.

Категории 802.3, 802.4, 802.5 и 802.12 определяют стандарты как для этого подуровня, так и для первого уровня модели OSI, Физического .

Уровень 2 — канальный уровень

Главная задача канального уровня удостовериться, что канал готов к передаче данных и ничто не станет угрожать надежности этой операции и целостности передаваемых пакетов. В идеале протоколы канального уровня и сетевое оборудование должны проверить, свободен ли канал для передачи данных, не имеется ли коллизий передачи и т. п.

Такую проверку необходимо выполнять каждый раз, так как локальная сеть чаше всего состоит более, чем из двух компьютеров (хотя даже в таком случае канал может быть занят). Обнаружив, что канал свободен, элементы этого уровня де­лят данные, которые необходимо передать другому компьютеру, на более мел­кие части — кадры. Затем каждый кадр снабжается контрольной сумой и отсылается. Приняв этот кадр, получатель проверяет контрольные суммы и. если они совпадают, принимает его и посылает отправителю подтверждение о достав­ке В противном случае получатель игнорирует кадр и фиксирует ошибку, после чего кадр передастся заново. Так. кадр за кадром, передастся необходимая ин­формация.

На канальном уровне, как и па физическом, также существуют различия между проводными и беспроводными сетями. Это связано со спецификой сетевого обо­рудования. Так. доступное на данный момент беспроводное оборудование работает только в полудуплексном режиме: в один момент времени данные могут только приниматься или только передаваться. Этот недостаток резко уменьшает эффек­тивность обнаружения коллизий в сети и, соответственно, понижает скорость пе­редачи данных.

Поскольку модель ISO/OSI  жестко регламентирует действия каждого уровня, то разработчикам пришлось немного модернизировать протоколы канального уровня для работы в беспроводных сетях. В частности, для беспроводной переда­чи данных используются протоколы CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance, много станционный доступ к среде передачи с контролем не­сущей и избежанием коллизий) или DCF (Distributed Coordination Function, рас­пространяемая координирующая функция).

Протокол CSMA/CA предназначен для обнаружения конфликтов при передаче данных. Он использует явное подтверждение доставки данных, сообщающее о том. что передаваемый пакет доставлен и не поврежден.

Данный метод работает следующим образом. Когда одни компьютер собирается передать информацию другому, он посылает всем компьютерам сети короткое сооб­щение RTS (ReadyТо Send, готов к передаче), содержащее информацию о получателе и времени, необходимом для передачи данных. Получив такой пакет, все компьютеры прекращают на указанный промежуток времени передачу собственных данных. Компьютер, для которого предназначен пакет, отсылает отправителю сооб­щение CTS (ClearТо Send, свободен для передачи) о готовности к приему данных Получив такое сообщение, компьютер-отправитель пересылает первую порцию дан­ных и ждет подтверждения доставки пакета. После такого подтверждения передача данных продолжается. Если сообщение об успешной доставке не пришло, то компь­ютер-отправитель повторно передает необходимый пакет.

Такой метод передачи гарантирует доставку пакетов данных, однако в го же вре­мя заметно снижает скорость передачи. Именно поэтому беспроводные сети намного медленнее проводных и останутся таковыми надолго, если не навсегда. Что­бы хоть как-то повысить скорость передачи данных но таким сетям, специальный протокол канального уровня фрагментирует пересылаемые пакеты (разбивает их на более мелкие части), что увеличивает шанс их удачной передачи.

Обнаружение и исправление ошибок

Самый простой способ это обнаружить ошибку. Например, с помощью контрольной суммы или какого-либо другого алгоритма. Если у нас технология канального уровня использует обнаружение технических ошибок, то кадр в котором произошла ошибка, просто отбрасывается. Попыток восстановить данные не производится. 

Более сложный механизм — это исправление ошибок. Чтобы иметь возможность исправить ошибку, нужно добавить к данным дополнительную информацию, с помощью которой мы сможем обнаружить ошибки и восстановить правильные данные. Для этого используются специальные коды исправляющие ошибки. 

Другой вариант исправление ошибок при передаче данных — это повторная отправка тех кадров в которых произошла ошибка. Он используется совместно с обнаружением ошибок, когда отправитель передает данные получателю, получатель обнаруживает ошибку в данных, но вместо того чтобы исправить ошибку в передаваемых данных, отправитель передает эти данные еще раз. 

Давайте рассмотрим, как реализуется повторная отправка сообщений. Предположим, что у нас есть отправитель и получатель и отправитель передал получателю некоторое сообщение. Получатель получил это сообщение проверил его на корректность убедился, что данные переданы правильно и после этого передает отправителю подтверждение о получении. Отправитель передает следующее сообщение предположим, что здесь произошла ошибка, получатель эту ошибку обнаружил или сообщение вообще не дошло до получателя, поэтому получатель не может передать подтверждение о получении этого сообщения. 

Отправитель, после того как, отправил сообщение запустил таймер ожидания подтверждения. По истечению времени ожидания  подтверждение не пришло, отправитель понял, что при передаче сообщения произошла проблема и нужно повторно передать то же самое сообщение.

В этот раз сообщение успешно дошло до получателя и он снова передает подтверждение. После этого отправитель может передавать следующий кадр. 

Есть два варианта метода повторной отправки сообщения. Схему которую мы рассмотрели называется с остановкой и ожиданием. Отправитель передает фрейм и останавливается ожидая подтверждение. Следующий кадр передается только после того, как пришло подтверждение о получении предыдущего сообщения. Такой метод используются в технологии канального уровня Wi-Fi. 

Другой вариант метода повторной отправки это скользящее окно. В этом случае отправитель передает ни одно сообщение, а сразу несколько сообщений и количество сообщений, которые можно передать не дожидаясь подтверждения называется размером окна. Здесь получатель передает подтверждение не для каждого отдельного сообщения, а для последнего полученного сообщения. Такой метод лучше работает на высокоскоростных каналах связи. Сейчас нет технологии канального уровня, которая использует этот метод, но он используется на транспортном уровне в протоколе TCP. 

У нас есть несколько вариантов, что можно делать с ошибками. Можно их обнаруживать, исправлять с помощью кодов исправления ошибок, либо с помощью повторной доставки сообщений. Также мы можем исправлять и обнаруживать ошибки на канальном уровне, либо на вышестоящих уровнях. 

Общее определение термина пакет

Для описания фрагментов информации, передаваемых по сети, применяются термины: пакет, дейтаграмма, фрейм, сообщение и сегмент. Все они по сути имеют один и тот же смысл, но относятся к разным уровням модели OSI. Например, пакет можно рассматривать как конверт с письмом. Чтобы отправить этот конверт по почте, необходимо выполнить ряд требований (рис.1), которые перечислены ниже.

  • Подготовить почтовое вложение. Эта составляющая почтового отправления представляет собой письмо, например, с фотографией новорожденного сына, отправляемой дяде Джо.
  • Написать на конверте адрес отправителя. Эта составляющая служит в качестве обратного адреса, который должен быть написан на стандартном конверте. Адрес указывает, от которого поступило сообщение, и необходим даже просто на тот случай, если возникнут проблемы с доставкой письма.
  • Написать на конверте адрес получателя. Эта составляющая представляет собой адрес дяди Джо, без которого письмо невозможно доставить намеченному получателю.
  • Пройти через систему проверки. Эта составляющая представляет собой штемпель на почтовой марке. Он подтверждает, что письмо отправлено с соблюдением всех требований и соответствует стандартам почтовой службы.


Рис.1. Обязательные составляющие обычного письма.

Передача сетевого пакета фактически происходит по таким же принципам, как и отправка обычного письма. Рассмотрим в качестве примера сообщение электронной почты, которое показано на рис.2. Для его доставки адресату необходимо такая же информация, как и для обычного письма (а также некоторые другие компоненты, которые рассматриваются в данной главе). эта информация описана ниже.

  • Почтовое вложение. Этот компонент представляет собой передаваемые данные, допустим, электронное письмо дяде Джо с сообщением о рождении сына.
  • Адрес отправителя. Этот компонент служит в качестве обратного адреса для электронного письма. Он позволяет узнать от кого поступило сообщение, даже просто на тот случай, если возникнет проблема при доставке электронной почты.
  • Адрес получателя. Этот компонент представляет собой адрес электронной почты дяди Джо и необходим для правильной доставки электронной почты.
  • Информация для системы проверки. Если речь идет о пакете, то этот компонент представляет собой определенную информацию для системы контроля ошибок. В данном случае применяется контрольная последовательность фрейма (Frame Check Sequence — FCS). Такую последовательность можно рассматривать как результат вычислений, выполненных над содержимым пакета с помощью некоторой математической формулы. Если вычисления FCS в пункте назначения {на компьютере дяди Джо) дадут правильный результат, это будет означать, что данные в пакете являются действительными и должны быть приняты. А если результаты вычислений окажутся неправильными, сообщение будет отброшено.


Рис.2. Основные компоненты пакете.

Далее понятие пакета применяется для иллюстрации процесса прохождения данных сверху вниз по уровням модели OSI, затем по физическому кабелю, а после этого снизу вверх по уровням модели OSI. Пока они не поступят в виде нового сообщения во входной почтовый ящик дяди Джо.

Инкапсуляция данных

Взаимодействие между одноименными уровнями модели OSI осуществляется логически с использованием правил того или иного протокола. Это взаимодействие происходит в форме передачи сообщений, которые называются блоками данных протокола (protocol data units, PDU). Каждый PDU имеет специальный формат, определенный в соответствии с функциями и требованиями конкретного протокола.

Для организации передачи данных, протокол уровня N должен передать PDU на нижележащий уровень N-1. Протокол уровня N-1 предоставит сервис вышележащему уровню N, т.е. он примет PDU протокола уровня N, который станет для него данными,обработает их и передает дальше на уровень N-2. На уровне N-1 PDU протокола уровня N будет называться блоком данных сервиса (service data unit, SDU). Чтобы обеспечить сервис, протокол уровня N-1 помещает SDU, полученный от уровня N, в поле данных своего PDU и добавляет служебную информацию (заголовки и/или концевики), необходимую протоколу для реализации своей функции. Этот процесс называется инкапсуляцией данных.

Инкапсуляция — это процесс, при котором к данным добавляется служебная информация определенного протокола (уровня) перед отправкой в сеть.

Для обозначения PDU некоторых протоколов используются специальные термины. Сегментом (segment) называется PDU протокола TCP, который работает на транспортном уровне модели OSI и стека TCP/IP. Пакетом (packet) или IP-дейтаграммой называют блок данных протокола IP, работающего на сетевом уровне модели OSI и уровня Интернет стека TCP/IP. На канальном уровне модели OSI и уровне доступа к сети стека TCP/IP PDU называются кадрами (frame).

Рассмотрим процесс инкапсуляции при передаче данных между узлами, показанный на рисунке 2.4. Когда приложение на компьютере А отправляет сообщение приложению на компьютер В, то оно передает его на уровень приложений компьютера А. Затем с уровня приложений, данные передаются на уровень представлений, который отправляет их ниже на сеансовый уровень. Сеансовый уровень пересылает данные транспортному уровню, который в свою очередь формирует сегмент путем добавления служебной информации, и передает его сетевому уровню модели OSI. Сетевой уровень принимает сегмент и добавляет свой заголовок, образуя пакет, и передает его нижележащему уровню. Канальный уровень в свою очередь создает кадр путем добавления заголовка канального уровня и концевика, затем передает его физическому уровню. На физическом уровне поток битов преобразуется в электрические, электромагнитные или оптические сигналы, которые отправляются через среду передачи компьютеру В.

Физический уровень компьютера В принимает сигналы из физической среды, извлекает из них информацию в виде потока битов. Далее из этого потока формируется кадр, который передается выше на канальный уровень. Канальный уровень принимает кадр и анализирует служебную информацию, предназначенную для него. В случае отсутствия каких-либо ошибок, канальный уровень извлекает из сообщения данные, предназначенные для вышележащего сетевого уровня, и передает их ему. Этот процесс повторяется на каждом вышележащем уровне вплоть до уровня приложений. Уровень приложений компьютера В передает информацию приложению-приемнику и процесс обмена данными завершается. Другими словами, достигнув узла-получателя, сообщение проходит через все уровни в обратном порядке (от 1-го до 7-го), последовательно преобразовываясь на каждом из них с использованием соответствующей служебной информации, пока не достигнет приложения-приемника. Этот процесс называется декапсуляцией данных.

Уровни OSI

Для наглядности процесс работы сети принято разделять на 7 уровней, на каждом из которых работает своя группа протоколов.

Для выполнения разных задач имеется несколько протоколов, которые занимаются обслуживанием систем, например, стек TCP/IP. Давайте здесь внимательно посмотрим на то, каким образом информация с одного компьютера отправляется по локальной сети на другой комп.

Задачи компьютера ОТПРАВИТЕЛЯ:

  • Взять данные из приложения
  • Разбить их на мелкие пакеты, если большой объем
  • Подготовить к передаче, то есть указать маршрут следования, зашифровать и перекодировать в сетевой формат.

Задачи компьютера ПОЛУЧАТЕЛЯ:

  • Принять пакеты данных
  • Удалить из него служебную информацию
  • Скопировать данные в буфер
  • После полного приема всех пакетов сформаровать из них исходный блок данных
  • Отдать его приложению

Для того, чтобы верно произвести все эти операции и нужен единый свод правил, то есть эталонная модель OSI.

Вернемся у к уровням OSI. Их принято отсчитывать в обратном порядке и в верхней части таблицы располагаются сетевые приложения, а в нижней — физическая среда передачи информации. По мере того, как данные от компьютера спускаются вниз непосредственно к сетевому кабелю, протоколы, работающие на разных уровнях, постепенно их преобразовывают, подготавливая к физической передаче.

Разберем их подробнее.

6. Уровень представления (Presentation Layer)

Переводит эти данные на единый универсальный язык. Дело в том, что каждый компьютерный процессор имеет собственный формат обработки данных, но в сеть они должны попасть в 1 универсальном формате — именно этим и занимается уровень представления.

Ваше мнение — WiFi вреден?

Да
24.09%

Нет
75.91%

Проголосовало: 3051

5. Сеансовый уровень (Session Layer)

У него много задач.

  1. Установить сеанс связи с получателем. ПО предупреждает компьютер-получатель о том, что сейчас ему будут отправлены данные.
  2. Здесь же происходит распознавание имен и защита:
    • идентификация — распознавание имен
    • аутентификация — проверка по паролю
    • регистрация — присвоение полномочий
  3. Реализация того, какая из сторон осуществляет передачу информации и как долго это будет происходить.
  4. Расстановка контрольных точек в общем потоке данных для того, чтобы в случае потери какой-то части легко было установить, какая именно часть потеряна и следует отправить повторно.
  5. Сегментация — разбивка большого блока на маленькие пакеты.

4. Транспортный уровень (Transport Layer)

Обеспечивает приложениям необходимую степень защиты при доставке сообщений. Имеется две группы протоколов:

  • Протоколы, которые ориентированы на соединение — они отслеживают доставку данных и при необходимости запрашивают повторную отправку при неудаче. Это TCP — протокол контроля передачи информации.
  • Не ориентированные на соединение (UDP) — они просто отправляют блоки и дальше не следят за их доставкой.

3. Сетевой уровень (Network Layer)

Обеспечивает сквозную передачу пакета, рассчитывая его маршрут. На этом уровне в пакетах ко всей предыдущей динформации, сформированной другими уровнями, добавляются IP адреса отправителя и получателя. Именно с этого момент пакет данных называется собственно ПАКЕТОМ, у которого есть IP адреса (IP протокол — это протокол межсетевого взаимодействия).

2. Канальный уровень (Data Link Layer)

Здесь происходит передача пакета в пределах одного кабеля, то есть одной локальной сети. Он работает только до пограничного маршрутизатора одной локальной сети. К полученному пакету канальный уровень добавляет свой заголовок — MAC адреса отправителя и получателя и в таком виде блок данных уже называется КАДРОМ.

При передачи за пределы одной локальной сети пакету присваивается MAC не хоста (компьютера), а маршрутизатора другой сети. Отсюда как раз появляется вопрос серых и белых IP, о которых шла речб в статье, на которую была выше дана ссылка. Серый — это адрес внутри одной локальной сети, который не используетс яза ее пределами. Белый — уникальный адрес во всем глобальном интернете.

При поступлении пакета на пограничный роутер IP пакета подменяется на IP этого роутера и вся локальная сеть выходит в глобальную, то есть интернет, под одним единственным IP адресом. Если адрес белый, то часть данных с IP адресом не изменяется.

1. Физический уровень (Transport layer)

Отвечает за преобразование двоичной информации в физический сигнал, который отправляется в физический канал передачи данных. Если это кабель, то сигнал электрический, если оптоволоконная сеть, то в оптический сигнал. Осуществляется это преобразование при помощи сетевого адаптера.

Соответствие модели OSI и других моделей сетевого взаимодействия

Поскольку наиболее востребованными и практически используемыми стали протоколы (например TCP/IP), разработанные с использованием других моделей сетевого взаимодействия, далее необходимо описать возможное включение отдельных протоколов других моделей в различные уровни модели OSI.

Семейство TCP/IP

Семейство TCP/IP имеет три транспортных протокола: TCP, полностью соответствующий OSI, обеспечивающий проверку получения данных; UDP, отвечающий транспортному уровню только наличием порта, обеспечивающий обмен датаграммами между приложениями, не гарантирующий получения данных; и SCTP, разработанный для устранения некоторых недостатков TCP, в который добавлены некоторые новшества. В семействе TCP/IP есть ещё около двухсот протоколов, самым известным из которых является служебный протокол ICMP, используемый для внутренних нужд обеспечения работы; остальные также не являются транспортными протоколами.

Семейство IPX/SPX

В семействе IPX/SPX порты появляются в протоколе сетевого уровня IPX, обеспечивая обмен датаграммами между приложениями (операционная система резервирует часть сокетов для себя). Протокол SPX, в свою очередь, дополняет IPX всеми остальными возможностями транспортного уровня в полном соответствии с OSI.

В качестве адреса хоста ICX использует идентификатор, образованный из четырёхбайтного номера сети (назначаемого маршрутизаторами) и MAC-адреса сетевого адаптера.

Что такое модель OSI?

Модель OSI (Open Systems Interconnection model) — это сетевая модель стека сетевых протоколов OSI/ISO. С помощью данной модели различные сетевые устройства могут взаимодействовать друг с другом. Модель определяет различные уровни взаимодействия систем. Каждый уровень выполняет определённые функции при таком взаимодействии.

В данной статье мы рассмотрим назначение уровней эталонной модели osi, с подробным описанием каждого из семи уровней модели.

Процесс организации принципа сетевого взаимодействия, в компьютерных сетях, довольно-таки сложная и непростая задача, поэтому для осуществления этой задачи решили использовать хорошо известный и универсальный подход — декомпозиция.

Декомпозиция — это научный метод, использующий разбиение одной сложной задачи на несколько более простых задач — серий (модулей), связанных между собой.

Многоуровневый подход:

  • все модулей дробятся на отдельные группы и сортируются по уровням, тем самым создавая иерархию;
  • модули одного уровня для осуществления выполнения своих задач посылает запросы только к модулям непосредственно примыкающего нижележащего уровня;
  • включается работу принцип инкапсуляции – уровень предоставляет сервис, пряча от других уровней детали его реализации.

На Международную Организацию по Стандартам (International Standards Organization, ISO, созданная в 1946 году) возложили задачу создания универсальной модели, которая четко разграничит и определит различные уровни взаимодействия систем, с поименованными уровнями и с наделением каждого уровня своей конкретной задачи. Эту модель назвали моделью взаимодействия открытых систем (Open System Interconnection, OSI) или моделью ISO/OSI .

Эталонная Модель Взаимосвязи Открытых Систем (семиуровневая модель osi) введена в 1977 г.

После утверждения данной модели, проблема взаимодействия была разделена (декомпозирована) на семь частных проблем, каждая из которых может быть решена независимо от других.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector