Протокол tcp/ip

Зачем менять IPv4?

Главная причина — адресов IPv4 уже давно не хватает.

Дело в том, что IP-уровень стека протоколов TCP/IP считается наиболее важной частью всей архитектуры глобальной сети. IPv4 — четвёртая версия протокола IP, после запуска которой сразу стало ясно, что существуют ограничения в плане возможностей и масштабируемости

То есть распределение адресного пространства происходило намного быстрее, чем могла себе позволить архитектура IPv4.

Результат — появление классовой, а потом и бесклассовой адресации. В итоге уже в феврале 2011 года IANA выделила пять последних блоков адресов RIRам. В результате уже в том же году свободные IP-адреса стали заканчиваться и у региональных регистраторов.

Как раз для решения этой проблемы и была разработана альтернатива — версия IP-протокола, известная под названием IPv6.

Автор этой статьи знает о проблеме недостатка адресов IPv4 не понаслышке. Ещё в 2014 году, работая над дипломом в университете, я столкнулся с тем, что не смог получить в своё распоряжение статический IP. И даже будучи на тот момент индивидуальным предпринимателем, оформив соответствующую заявку и лично поговорив с руководством компании-провайдера, проблему в сжатые сроки мне решить не удалось. А ведь в рамках дипломного проекта я создавал сервер на собственном домашнем компьютере и статический IP был просто жизненно необходим. На мои постоянные вопросы о том, как же мне получить этот адрес, звучал простой ответ: «Когда кто-нибудь откажется — тогда дадим вам». Понятное дело, никто отказываться не спешил. Проект удалось в итоге реализовать, используя динамический IP, но это было совсем не то, что планировалось изначально.

Что есть MAC-адрес

Дело в том, что пересылаемые пакеты в сети адресуются компьютерам не по их именам и не на IP-адрес. Пакет предназначается устройству с конкретным адресом, который и называется MAC-адресом.

MAC-адрес — это уникальный адрес сетевого устройства, который заложен в него изготовителем оборудования, т.е. это этакий проштампованный номер Вашей сетевой карты. Первая половина MAC-адрес представляет собой идентификатор изготовителя, вторая — уникальный номер данного устройства.

Как правило MAC-адрес бывает требуется для идентификации, скажем, у провайдера (если провайдер использует привязку по мак-адресу вместо логина-пароля) или при настройке маршрутизатора.

Специальные типы IP-адресов

Какие бывают специальные типы IP адресов:

В номере хоста нельзя использовать только битовые 0, и только битовые 1. Если мы укажем только битовые 0, то это получится не адрес хоста, а адрес подсети 213.180.193.0.

А если укажем только битовые 1, то это будет широковещательный адрес. 213.180.193.255.

Часто, маршрутизатору по умолчанию в сети, или шлюзу, через которые все компьютеры сети попадают в интернет, присваивают адрес с номером 1. Однако четких правил нет, так делать не обязательно 213.180.193.1.Адрес который состоит из всех 0.0.0.0 это адрес текущего хоста. Он используется, когда компьютер еще не получил свой IP адрес.

Адрес из всех битовых единиц, 255.255.255.255 это все хосты в текущей подсети (ограниченный широковещательный адрес).

127.0.0.0/8 это обратная петля, специальный диапазон адресов, который выделен для того чтобы отлаживать сетевые приложения, если у вас нет сетевого оборудование  или оно настроено не так как вам нужно, в этом случае данные не отправляются в сеть, а приходят обратно на компьютер. Часто из этой сети используется адрес 127.0.0.1 это текущий компьютер (localhost). Однако не обязательно для этой цели использовать адрес с хостом 1, можно использовать 2, 3 или другой любой IP адрес из этого диапазона. IP адреса из подсети 169.254.0.0/16 называются Link-local адреса. Случае если вы не настроили IP адрес на своем ПК вручную или каким либо другим способом, например с помощью протокола DHCP, то операционная система сама может назначить компьютеру адрес из этого диапазона. Такие адреса могут использоваться только в пределах подсети и не проходят через маршрутизатор.

Использование масок в IP адресации

Для того, чтобы получить тот или иной диапазон IP-адресов предприятиям предлагалось заполнить регистрационную форму, в которой перечислялось текущее число ЭВМ и планируемое увеличение количества вычислительных машин и в итоге предприятию выдавался класс IP – адресов: A, B, C, в зависимости от указанных данных в регистрационной форме.

Данный механизм выдачи диапазонов IP-адресов работал штатно, это было связано с тем, что поначалу в организациях было небольшое количество ЭВМ и соответственно небольшие вычислительные сети. Но в связи с дальнейшим бурным ростом интернета и сетевых технологий описанный подход к распределению IP-адресов стал выдавать сбои, в основном связанные с сетями класса «B». Действительно, организациям, в которых число компьютеров не превышало нескольких сотен (скажем, 500), приходилось регистрировать для себя целую сеть класса «В» (так как класс «С» только для 254 компьютеров, а класс «В» — 65534). Из-за чего доступных сетей класса «В» стало, просто на просто, не хватать, но при этом большие диапазоны IP-адресов пропадали зря.

Традиционная схема деления IP-адреса на номер сети (NetID) и номер узла (HostID) основана на понятии класса, который определяется значениями нескольких первых бит адреса. Именно потому, что первый байт адреса 185.23.44.206 попадает в диапазон 128-191, мы можем сказать, что этот адрес относится к классу В, а значит, номером сети являются первые два байта, дополненные двумя нулевыми байтами — 185.23.0.0, а номером узла — 0.0.44.206.

А что если использовать какой-либо другой признак, с помощью которого можно было бы более гибко устанавливать границу между номером сети и номером узла? В качестве такого признака сейчас получили широкое распространение маски.

Маска — это число, которое используется в паре с IP-адресом; двоичная запись маски содержит единицы в тех разрядах, которые должны в IP-адресе интерпретироваться как номер сети. Поскольку номер сети является цельной частью адреса, единицы в маске также должны представлять непрерывную последовательность.

Для стандартных классов сетей маски имеют следующие значения:

  • класс А — 11111111. 00000000. 00000000. 00000000 (255.0.0.0);
  • класс В — 11111111. 11111111. 00000000. 00000000 (255.255.0.0);
  • класс С — 11111111. 11111111.11111111. 00000000 (255.255.255.0).

Снабжая каждый IP-адрес маской, можно отказаться от понятий классов адресов и сделать более гибкой систему адресации. Например, если рассмотренный выше адрес 185.23.44.206 ассоциировать с маской 255.255.255.0, то номером сети будет 185.23.44.0, а не 185.23.0.0, как это определено системой классов.

Расчет номера сети и номера узла с помощью маски:

В масках количество единиц в последовательности, определяющей границу номера сети, не обязательно должно быть кратным 8, чтобы повторять деление адреса на байты. Пусть, например, для IP-адреса 129.64.134.5 указана маска 255.255.128.0, то есть в двоичном виде:

  • IP-адрес 129.64.134.5 — 10000001. 01000000.10000110. 00000101
  • Маска 255.255.128.0 — 11111111.11111111.10000000. 00000000

Если игнорировать маску, то в соответствии с системой классов адрес 129.64.134.5 относится к классу В, а значит, номером сети являются первые 2 байта — 129.64.0.0, а номером узла — 0.0.134.5.

Если же использовать для определения границы номера сети маску, то 17 последовательных единиц в маске, «наложенные» (логическое умножение) на IP-адрес, определяют в качестве номера сети в двоичном выражении число:

или в десятичной форме записи — номер сети 129.64.128.0, а номер узла 0.0.6.5.

Существует также короткий вариант записи маски, называемый префиксом или короткой маской. В частности сеть 80.255.147.32 с маской 255.255.255.252, можно записать в виде 80.255.147.32/30, где «/30» указывает на количество двоичных единиц в маске, то есть тридцать бинарных единиц (отсчет ведется слева направо).

Для наглядности в таблице отображается соответствие префикса с маской:

Механизм масок широко распространен в IP-маршрутизации, причем маски могут использоваться для самых разных целей. С их помощью администратор может структурировать свою сеть, не требуя от поставщика услуг дополнительных номеров сетей. На основе этого же механизма поставщики услуг могут объединять адресные пространства нескольких сетей путем введения так называемых «префиксов» с целью уменьшения объема таблиц маршрутизации и повышения за счет этого производительности маршрутизаторов. Помимо этого записывать маску в виде префикса значительно короче.

Как мы пришли к TCP/IP

Сегодня в мире компьютерных сетей используется одна сетевая модель: TCP/IP. Однако мир не всегда был таким простым. Когда-то не существовало сетевых протоколов, включая TCP/IP. Производители создали первые сетевые протоколы; эти протоколы поддерживали только компьютеры конкретного производителя.

Например, IBM, компьютерная компания с самой большой долей на многих рынках в 1970-х и 1980-х годах, опубликовала свою сетевую модель Systems Network Architecture (SNA) в 1974 году. Другие производители также создали свои собственные проприетарные сетевые модели. В результате, если ваша компания покупала компьютеры трех производителей, сетевым инженерам часто приходилось создавать три разные сети на основе сетевых моделей, созданных каждой компанией, а затем каким-то образом соединять эти сети, что значительно усложняло объединенные сети. В левой части рисунка 1 показано общее представление о том, как могла бы выглядеть корпоративная сеть компании в 1980-х годах, до того, как TCP/IP стал обычным явлением в корпоративных объединенных сетях.

Рисунок 1 – История развития: движение от проприетарных моделей к открытой модели TCP/IP

Хотя проприетарные сетевые модели, определяемые производителями, часто работают хорошо, наличие открытой сетевой модели, не зависящей от производителя, может способствовать конкуренции и снизить сложность. Международная организация по стандартизации (ISO) взяла на себя задачу создать такую модель, начав еще в конце 1970-х годов работу над так называемой сетевой моделью взаимодействия открытых систем (OSI, Open Systems Interconnection). ISO поставила перед моделью OSI благородную цель: стандартизировать сетевые протоколы передачи данных, чтобы обеспечить связь между всеми компьютерами на всей планете. Во время работы ISO над достижением этой амбициозной и благородной цели в процессе были задействованы участники из большинства технологически развитых стран мира.

Вторая, менее формальная попытка создать открытую, нейтральную по отношению к производителям открытую сетевую модель возникла в результате контракта Министерства обороны США (DoD, Department of Defense). Исследователи из различных университетов вызвались помочь в дальнейшей разработке протоколов, относящихся к исходной работе Министерства обороны США. Эти усилия привели к созданию конкурирующей открытой сетевой модели под названием TCP/IP.

В течение 1990-х годов компании начали добавлять OSI, TCP/IP или и то, и другое в свои корпоративные сети. Однако к концу 1990-х TCP/IP стал основным, и OSI отпала. Центральная часть рисунка 1 показывает общую идею корпоративных сетей того десятилетия – сети, построенные на нескольких сетевых моделях, но включающие TCP/IP.

Сейчас, в двадцать первом веке, доминирует TCP/IP. Проприетарные сетевые модели всё еще существуют, но в основном от них отказались в пользу TCP/IP. Модель OSI, развитие которой частично пострадало из-за более медленного официального процесса стандартизации по сравнению с TCP/IP, так и не добилось успеха на рынке. И TCP/IP, сетевая модель, изначально созданная почти целиком группой добровольцев, стала самой успешной сетевой моделью за всю историю, как показано на правой части рисунка 1.

В данной главе вы прочитаете о некоторых основах TCP/IP. Хотя вы узнаете некоторые интересные факты о TCP/IP, настоящая цель – помочь вам понять, что на самом деле представляет собой сетевая модель или сетевая архитектура, и как она работает.

Формат заголовка IP

Структура IP пакетов версии 4 представлена на рисунке

  • Версия — для IPv4 значение поля должно быть равно 4.
  • IHL — (Internet Header Length) длина заголовка IP-пакета в 32-битных словах (dword). Именно это поле указывает на начало блока данных в пакете. Минимальное корректное значение для этого поля равно 5.
  • Тип обслуживания (Type of Service, акроним TOS) — байт, содержащий набор критериев, определяющих тип обслуживания IP-пакетов, представлен на рисунке.

Описание байта обслуживания побитно:

    • 0-2 — приоритет (precedence) данного IP-сегмента
    • 3 — требование ко времени задержки (delay) передачи IP-сегмента (0 — нормальная, 1 — низкая задержка)
    • 4 — требование к пропускной способности (throughput) маршрута, по которому должен отправляться IP-сегмент (0 — низкая, 1 — высокая пропускная способность)
    • 5 — требование к надежности (reliability) передачи IP-сегмента (0 — нормальная, 1 — высокая надежность)
    • 6-7 — ECN — явное сообщение о задержке (управление IP-потоком).
  • Длина пакета — длина пакета в октетах, включая заголовок и данные. Минимальное корректное значение для этого поля равно 20, максимальное 65535.
  • Идентификатор — значение, назначаемое отправителем пакета и предназначенное для определения корректной последовательности фрагментов при сборке пакета. Для фрагментированного пакета все фрагменты имеют одинаковый идентификатор.
  • 3 бита флагов. Первый бит должен быть всегда равен нулю, второй бит DF (don’t fragment) определяет возможность фрагментации пакета и третий бит MF (more fragments) показывает, не является ли этот пакет последним в цепочке пакетов.
  • Смещение фрагмента — значение, определяющее позицию фрагмента в потоке данных. Смещение задается количеством восьми байтовых блоков, поэтому это значение требует умножения на 8 для перевода в байты.
  • Время жизни (TTL) — число маршрутизаторов, которые должен пройти этот пакет. При прохождении маршрутизатора это число уменьшатся на единицу. Если значения этого поля равно нулю то, пакет должен быть отброшен и отправителю пакета может быть послано сообщение Time Exceeded (ICMP код 11 тип 0).
  • Протокол — идентификатор интернет-протокола следующего уровня указывает, данные какого протокола содержит пакет, например, TCP или ICMP.
  • Контрольная сумма заголовка — вычисляется в соответствии с RFC 1071

Перехваченный IPv4 пакет с помощью сниффера Wireshark:

Цели создания IPv6

Может возникнуть вопрос, зачем нужен еще один протокол сетевого уровня, если уже есть протокол IPv4, который работает хорошо. Проблема протокола IPv4 заключается в нехватке IP адресов. Длина IP адресов в протоколе IPv4 — 4 байта, то есть максимальное количество адресов IPv4 примерно 4,3 миллиарда. Когда протокол создавался это было большое количество IP адресов, но сейчас, когда интернет стал очень популярной сетью, стало понятно, что 4 миллиарда адресов это не так уж и много.

Для сравнения, население Земли сейчас составляет более, чем 7 миллиардов, при этом многие люди используют не одно устройство, а несколько, это может быть ноутбук, планшет, смартфон, умные часы и многое другое.

Также, необходимо учитывать сервер и сетевое оборудование в инфраструктуре интернет и сетевых сервисов, а такие технологии, как интернет вещей еще больше увеличивают требования к количеству IP адресов.

Количество доступных адресов IPv4 стремительно сокращается, последний крупный блок адресов IPv4 класса А, был выдан в 2011 году, и уже близко то время, когда какая-то компания или человек захотят подключиться к интернет, но не смогут этого сделать, из-за того что им не хватит адреса IPv4.

Было предложено несколько временных решений, проблемы нехватки IP адресов, которые оказались достаточно успешными. Самые популярные это технология трансляции сетевых адресов NAT, эта технология позволяет подключиться к сети интернет используя всего лишь один IP адрес, сеть, состоящую из большого количества устройств с использованием частных или приватных IP адресов.

Также справиться с проблемой нехватки IP адресов помогла технология бесклассовой междоменной маршрутизации (Classless Inter-Domain Routing, CIDR), которая обеспечила возможность использовать маски переменной длины, и распределять IP адреса блоками разной длины, а не классами A, B и C как было раньше.

Протокол IPv6 создан для долговременного решения проблемы нехватки IP адресов. Для этого длина IP адресов в протоколе IPv6 увеличена до 16 байт, количество IP адресов в протоколе IPv6 — 3,4*1038. Такого количества IP адресов хватит, для того чтобы подключить к интернету все устройства, как сейчас так и в достаточно далеком будущем.

Также при разработке IPv6 постарались упростить протокол, для того чтобы маршрутизаторы могли обрабатывать пакеты  IPv6 быстрее, и обеспечили возможность защиты данных с помощью шифрования.

IPv6 считается новым протоколом, однако работа над ним началась еще в 1990 году, когда впервые задумались о возможной проблеме исчерпания адресов IPv4. Первый вариант стандарта протокола IPv6 был принят в документе RFC 1883 в 1995 году, а действующий стандарт протокола IPv6 документ RFC 2460 был принят в 1998 году. Таким образом протоколу IPv6 уже больше 20 лет, и новым его можем называть только по сравнению с протоколом IPv4.

Подсети

Для соединения двух узлов в разных сетях требуется маршрутизатор. Номер хоста определяется 24 битами IP-адреса класса А, в то время как для сети класса С доступно лишь 8 битов. Маршрутизатор разделяет номер хоста на номер подсети и номер хоста в подсети. Включение дополнительных маршрутизаторов сократит объемы широковещательной передачи в сети, а это может сократить нагрузку в сети.

Новые маршрутизаторы главным образом включаются, чтобы улучшить возможность соединения между группами компьютеров в разных зданиях, городах и т. д. Рассмотрим пример разделения сети класса С с адресом 194.180.44 на подсети.

Такая сеть может фильтровать адреса с помощью маски подсети (subnet mask) 255.255.255.224. Первые три байта (состоящие из всех единиц) представляют собой маску для сети класса С. Последний байт — это десятичное значение двоичного представления 11100000, в котором первые три бита адреса хоста указывают подсеть, а последние пять битов представляют адрес хоста в конкретной подсети. Три бита подсети представляют 128, 64 и 32, и, таким образом, поддерживаются адреса подсетей, показанные ниже:

Пример запроса HTTP

Рассмотрим примеры запроса и ответа HTTP. 

HTTP работают в текстовом режиме, нам необходимо подключиться к веб-серверу, например www.zvondozvon.ru к порту 80 по протоколу TCP. Дальше мы пишем запрос, используем метод GET хотим получить ресурс /tehnologii/protokoli и указываем версию протокола по которой мы хотим работать HTTP 1.1. Так как мы используем версию 1.1 нам необходимо указать заголовок host, доменное имя сервера с которым мы работаем www.zvondozvon.ru, этого вполне достаточно для того чтобы веб-сервер нам ответил. 

Ответ веб-сервера начинается со статуса 200 ok, обработка запроса произошла успешно, также вначале указываются версия протокола, которая используется HTTP 1.1. Затем идут несколько заголовков реализации веб-сервера nginx, тип передаваемой страницы текста html кодировка utf-8, длина страницы 5161 байт, также здесь могут идти другие заголовки, которые вам передал сервер. 

Затем идет пустая строка и код веб-страницы. После передачи web страницы, соединение tcp разрывается, можно оставить соединение открытым для последующей работы, но для этого необходимо использовать дополнительный заголовок. 

Продолжение про протокол HTTP читайте в статье постоянное соединение и кэширование протокола HTTP.

Адрес почтового сервера

Система DNS активно используются при работе электронной почты предположим, что мы хотим отправить электронное письмо на некоторый адрес в домене gmail.com, но как мы узнаем адрес почтового сервера, который принимает почту для этого домена?

Это можно сделать с помощью DNS. Для этого в DNS есть запись специального типа MX (Mail eXechange), например для домена gmail.com есть целых пять записей типа MX, которые задают пять серверов, принимающие почту в домене Google.

Запись MX содержит два поля. Первое поле это приоритет, а второе это адрес сервера принимающего почту для данного домена. Чем ниже значение, тем более высокий приоритет. Самый высокий приоритет у сервера, у которого значение приоритета пять и самый низкий приоритет у сервера со значением 40. Таким образом, при отправке электронной почты сначала будет выбираться сервер с наименьшим приоритетом, если по каким-либо причинам он будет недоступен, следующий сервер и так далее.

Сетевые протоколы UDP, TCP, ICMP

В рамках протокола TCP/IP для передачи данных используются протоколы — TCP и UDP. Многие наверняка слышали, что есть порты как TCP, так и UDP, но не все знают в чем разница и что это вообще. И так..

Передача данных по протоколу TCP (Transmission Control Protocol — Протокол Управления Передачей) предусматривает наличие подтверждений получения информации. «-Ну, мол, — получил? -Получил!» Если же передающая сторона не получит в установленные сроки необходимого подтверждения, то данные будут переданы повторно. Поэтому протокол TCP относят к протоколам, предусматривающим соединение, а UDP (User Datagram Protocol — Протокол Пользовательских Датаграмм) — нет. UDP применяется в тех случаях, когда не требуется подтверждения приема (например, DNS-запросы или IP-телефония (яркий представитель которой, — Skype) ). То есть разница заключается в наличии подтверждения приема. Казалось бы «Всего то!», но на практике это играет важную роль.

Есть еще так же протокол ICMP (Internet Control Message Protocol — межсетевой протокол управляющих сообщений), который используется для передачи данных о параметрах сети. Он включает в себя служебные типы пакетов, таки как ping, distination unreachable, TTL и пр.

Что такое протокол TCP/IP?

Протокол TCP/IP (Transmission Control Protocol/Internet Protocol) представляет собой стек сетевых протоколов, повсеместно используемый для Интернета и других подобных сетей (например, данный протокол используется и в ЛВС). Название TCP/IP произошло от двух наиболее важных протоколов:

  • IP (интернет протокол) — отвечает за передачу пакета данных от узла к узлу. IP пересылает каждый пакет на основе четырехбайтного адреса назначения (IP-адрес).
  • TCP (протокол управления передачей) — отвечает за проверку корректной доставки данных от клиента к серверу. Данные могут быть потеряны в промежуточной сети. В протоколе TCP добавлена возможность обнаружения ошибок или потерянных данных и, как следствие, возможность запросить повторную передачу, до тех пор, пока данные корректно и полностью не будут получены.

Основные характеристики TCP/IP:

  • Стандартизованные протоколы высокого уровня, используемые для хорошо известных пользовательских сервисов.
  • Используются открытые стандарты протоколов, что дает возможность разрабатывать и дорабатывать стандарты независимо от программного и аппаратного обеспечения;
  • Система уникальной адресации;
  • Независимость от используемого физического канала связи;

Принцип работы стека протоколов TCP/IP такой же как и в модели OSI, данные верхних уровней инкапсулируются в пакеты нижних уровней.

Если пакет продвигается по уровню сверху вниз — на каждом уровне добавляется к пакету служебная информация в виде заголовка и возможно трейлера (информации помещенной в конец сообщения). Этот процесс называется инкапсуляция. Служебная информация предназначается для объекта того же уровня на удаленном компьютере. Ее формат и интерпретация определяются протоколами данного уровня.

Если пакет продвигается по уровню снизу вверх — он разделяется на заголовок и данные. Анализируется заголовок пакета, выделяется служебная информация и в соответствии с ней данные перенаправляются к одному из объектов вышестоящего уровня. Вышестоящий уровень, в свою очередь, анализирует эти данные и также их разделяет их на заголовок и данные, далее анализируется заголовок и выделяется служебная информация и данные для вышестоящего уровня. Процедура повторяется заново пока пользовательские данные, освобожденные от всей служебной информации, не дойдут до прикладного уровня.

Не исключено, что пакет так и не дойдет до прикладного уровня. В частности, если компьютер работает в роли промежуточной станции на пути между отправителем и получателем, тогда объект, на соответствующем уровне, при анализе служебной информации определит, что пакет на этом уровня адресован не ему, в следствии чего, объект проведет необходимые мероприятия для перенаправления пакета к пункту назначения или возврата отправителю с сообщением об ошибке. Но так или иначе не будет осуществлять продвижение данных на верхний уровень.

Пример инкапсуляции можно представить следующим образом:

Рассмотрим каждые функции уровней

IP[править]

IP — протокол, лежащий в основе Интернета, его название так и расшифровывается: Internet Protocol.

В настоящее время используются следующие две версии протокола IP:

  • IPv6 — сравнительно новая (текущая версия спецификации опубликована в декабре 1998); IP-адрес имеет разрядность 128 бит и записывается в виде восьми 16-битных полей, с использованием шестнадцатеричной системы счисления и с возможностью сокращения двух и более последовательных нулевых полей до ; пример: ;
  • IPv4 — «классическая» (1981 г.); IP-адрес имеет разрядность 32 бита и записывается в виде четырех десятичных чисел в диапазоне 0 … 255 через точку; пример: .

Каждый узел может напрямую связаться только с узлами своей сети (например: подключенными к тому же сегменту Ethernet), для определения которых используется адрес сети — часть IP-адреса, определяемая маской сети. Связь с узлами других сетей осуществляется через промежуточные узлы — маршрутизаторы.

Посмотреть, как выглядит маршрут пакета от вашего компьютера к другим узлам, можно с помощью команды traceroute (в Linux) или tracert (в Windows).

Методы HTML

Клиент при обращении к серверу в запросе указывает метод, который он хочет использовать. 

  • Самые популярные методы это GET запрос на передачу веб-страницы, именно этот запрос используются чаще всего. 
  • POST передача данных на веб-сервер для обработки. Метод post используется например, когда вы пишите комментарии к роликам youtube, остальные методы, кроме get и post используются значительно реже. 
  • Метод HEAD запрашивает заголовок страницы, то же самое, что и GET только без тела сообщения, хотя HTTP разрабатывался для передачи веб-страниц, создатели HTTP предусмотрели возможность его использования для работы с ресурсами других типов. 
  • Метод PUT помещение ресурса на веб-сервер. 
  • Метод DELETE удаление страницы или ресурса с веб-сервера для выполнения этих методов необходимо иметь соответствующие права доступа. 
  • Метод TRACE позволяет отслеживать, что происходит со страницей, кто вносит в нее какие изменения. 
  • Метод OPTIONS позволяет узнать, какие именно методы поддерживаются для конкретного ресурса на веб-сервере.
  • Метод CONNECT позволяет подключиться к веб-серверу через прокси. 

Руководство по общему оборудованию

Наличие крупной компании подразумевает наличие широкого спектра сетей и оборудования для ее эксплуатации. Обычными устройствами, которые также могут быть доступны в вашем доме, являются маршрутизаторы и коммутаторы. Ниже приведены наиболее распространенные устройства и устройства, которые делают возможным подключение к Интернету.

Маршрутизатор

Основной задачей этого устройства является отправка данных через Интернет, который также является домом уровня Интернета. Он также отвечает за работу с конечными точками вашей локальной сети только в том случае, если связь выходит за пределы домена маршрутизатора.

Переключатель

Это оборудование отвечает за подключение всех компьютеров в вашей сети. Для подключения к коммутатору необходим один кабель на компьютер. Вы также увидите много других компьютеров в вашем офисе, которые имеют кабель, идущий в тот же коммутатор. Сообщения с одного компьютера на другой передаются через переключатель.

Мост

Подключение одного узла к другому является функцией моста. Подключение беспроводной сети и локальной сети возможно с помощью моста. Разница между переключателем и мостом в том, что мост имеет только одно соединение. Мост — это проходная секция и устройство физического уровня, не требующее сложного процессора**.**.

Ретранслятор

Расширение диапазона сигнала является основной функцией ретранслятора, который также называется «усилитель». Электрический импульс рассеивается на расстоянии по кабелям. Сигнал слабеет по мере его прохождения по Wi-Fi. Применяяя новый импульс электричества для передачи по кабелям и беспроводным сетям, он также ретранслирует сигналы. Это не требует программного обеспечения и является чисто физическим устройством без участия в протоколах.

Межсетевой уровень

Межсетевой уровень IPv4 состоит из всех протоколов и процедур, позволяющих потоку данных между хостами проходить по нескольким сетям. Следовательно, пакеты, в которых передаются данные, должны быть маршрутизируемыми. За маршрутизируемость пакетов отвечает протокол IP (Internet Protocol).

Межсетевой уровень должен поддерживать маршрутизацию и функции управления маршрутами. Эти функции предоставляются внешними протоколами, которые называются протоколами маршрутизации. К их числу относятся протоколы IGP (Interior Gateway Protocols) и EGP (Exterior Gateway Protocols).

Статусы HTTP

В ответе сервера первое поле это статус обработки запроса, статусы сгруппированы в пять групп и для каждой группы используется код статуса состоящий из трехзначного числа. 

  • Статусы, которые начинаются на единицу (1ХХ), используются для передачи информационных сообщений.
  • Статусы, которые начинаются на двойку (2ХХ), говорят о том, что запрос выполнен успешно, например наиболее популярный статус (200 OK), означает что страница найдена и она передается клиенту.
  • Статусы, которые начинаются на тройку (3ХХ), говорят о перенаправлении, например статус 301 — постоянное перенаправление, говорит о том что страница была перемещена на другой адрес и все последующие запросы должны передаваться на этот новый адрес. Статус 307 тоже говорит о перенаправлении, но временном, сейчас доступ к странице можно получить по другому адресу, но через некоторое время необходимо снова обращаться к исходному адресу.
  • Статусы, которые начинаются с четверки (4ХХ), говоря о том, что произошла какая-то ошибка на стороне клиента. Чаще всего встречается ошибка 404 — страница, которую запросил клиент не найдена на сервере. Также возможна ошибка 403 доступ к ресурсу, который запросил клиент запрещен и другие ошибки. 
  • Статусы начинающиеся на пять (5ХХ) говорят об ошибке на стороне сервера, например 500 — внутренняя ошибка сервера. 
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector