Деление в python

Примеры решения задач

Возведение числа в степень с помощью цикла while

n = int(input()) # число

k = int(input()) # степень

i = 1 # текущая степень

result = 1
while i k:

    result *= n

    i += 1
print(result)

Сумма последовательности с помощью цикла while

n = int(input())

result =

i =
while i n:

    result += i

    i += 1
print(result)

Ввод последовательности чисел

i =
while True:

    n = input()

    if n == ‘end’:

        print(‘Ввод закончен’)

        print(‘Было введено’, i, ‘чисел’)

        break

    n = int(n)

    i += 1

Сумма введенных чисел

i =

summa =
while True:

    n = input()

    if n == ‘end’:

        print(‘Ввод закончен’)

        print(‘Было введено’, i, ‘чисел’)

        print(‘Их сумма равна’, summa)

        break

    n = int(n)

    summa += n

    i += 1

Деление (/)

Сложение, вычитание и умножение тривиальны, а вот с делением не всё так просто. В Python существует три вида деления и столько же разных операторов. Начнём с истинного деления, за которое отвечает оператор «». Его главным отличием является то, что, вне зависимости от типов операндов, будет возвращен вещественный результат ().

Этот вид деления наиболее близок к обычному и знакомому нам математическому. И здесь тоже нельзя делить на ноль:

Немного истории. В старых версиях Питон оператор «/» выполнял операцию классического деления: т.е. он делил целочисленно и усекал дробную часть в том случае, когда делимое и делитель были целыми. Если же операнды принадлежали к множеству вещественных чисел, то проводилось деление с сохранением дробной части, и результат был float.

Разработчики отказались от классического деления в Python 3.0 и вместо него добавили истинное деление. Архитекторы языка пошли на такой шаг по той причине, что в предыдущей модели классического деления результаты напрямую зависели от типов операндов. Из-за этого возникали трудности с их предварительной идентификацией и оценкой, что было особенно критично для Питона, как для языка с динамической типизацией.

Менеджеры контекста

PEP 343

  • Определяет, что должен сделать менеджер контекста в начале блока, созданного оператором . Заметьте, что возвращаемое значение и есть то значение, с которым производится работа внутри .

  • Определяет действия менеджера контекста после того, как блок будет выполнен (или прерван во время работы). Может использоваться для контроллирования исключений, чистки, любых действий которые должны быть выполнены незамедлительно после блока внутри with. Если блок выполнен успешно, , , и будут установлены в . В другом случае вы сами выбираете, перехватывать ли исключение или предоставить это пользователю; если вы решили перехватить исключение, убедитесь, что возвращает после того как всё сказано и сделано. Если вы не хотите, чтобы исключение было перехвачено менеджером контекста, просто позвольте ему случиться.

contextlib

Оператор цикла for

Следующий и,
наверное, самый часто используемый оператор цикла – это оператор for, который имеет
такой синтаксис:

for <переменная> in <список> :
      операторы 1…N

Например,

for x in 1,5,2,4:
    print(x**2)

выведет в
консоль квадраты соответствующих чисел. Но что, если мы хотим перебрать
значения по порядку в соответствии с правилом:

начальное
значение, шаг, конечное значение

Для этого
используется генератор последовательностей

range(start, stop, step)

Например, если
мы запишем его вот так:

for x in range(1,5,1):
    print(x)

то в консоли
увидим числа от 1 до 4 с шагом 1. То есть, range генерирует
последовательность в интервале

[1;5)

Последнее
значение не входит в интервал. Если в нашем примере поставить шаг отрицательный
-1, то конечное значение 5 не может быть достигнуто и в этом случае Python возвратит пустую
последовательность:

for x in range(1,5,-1):
    print(x)

Если нам нужны
числа от 5 до 1, то следует записывать range в таком виде:

for x in range(5,,-1):
    print(x)

Причем, в range можно записывать
только целые числа, с вещественными он не работает.

Давайте
перепишем нашу программу подсчета суммы

с помощью цикла for, получим:

S=
for i in range(1, 1001, 1):
    S += 1/i
print(S)

Здесь весь цикл
записан буквально в одну строчку, а тело цикла состоит из одного оператора –
подсчета суммы ряда.

Вторым примером
рассмотрим задачу вычисления значений линейной функции

Программа будет
выглядеть так:

k = 0.5; b = 2
lst = , 0.1, 0.2, 0.3, 0.4, 0.5
for x in lst:
    print(x*k+b)

Этот пример
показывает, что для перебора значений счетчика x можно
использовать списки, сформированные ранее в программе. (О списках мы подробнее
будем говорить на последующих занятиях). Здесь же приведем еще один пример:

msg = "Hello World!"
for x in msg:
    print(x)

Он показывает,
что строку можно воспринимать как список и перебирать с помощью цикла for.

Также в цикле for можно
использовать блок else, о котором мы говорили ранее:

for <переменная> in <список> :
      операторы 1…N
else:
      операторы 1…N

Python F-Строки: Детали

На данный момент мы узнали почему f-строки так хороши, так что вам уже может быть интересно их попробовать в работе. Рассмотрим несколько деталей, которые нужно учитывать:

Кавычки

Вы можете использовать несколько типов кавычек внутри выражений. Убедитесь в том, что вы не используете один и тот же тип кавычек внутри и снаружи f-строки.

Этот код будет работать:

Python

print(f»{‘Eric Idle’}»)
# Вывод: ‘Eric Idle’

1
2

print(f»{‘Eric Idle’}»)

# Вывод: ‘Eric Idle’

И этот тоже:

Python

print(f'{«Eric Idle»}’)
# Вывод: ‘Eric Idle’

1
2

print(f'{«Eric Idle»}’)

# Вывод: ‘Eric Idle’

Вы также можете использовать тройные кавычки:

Python

print(f»»»Eric Idle»»»)
# Вывод: ‘Eric Idle’

1
2

print(f»»»Eric Idle»»»)

# Вывод: ‘Eric Idle’

Python

print(f»’Eric Idle»’)
# Вывод: ‘Eric Idle’

1
2

print(f»’Eric Idle»’)

# Вывод: ‘Eric Idle’

Если вам понадобиться использовать один и тот же тип кавычек внутри и снаружи строки, вам может помочь :

Python

print(f»The \»comedian\» is {name}, aged {age}.»)
# Вывод: ‘The «comedian» is Eric Idle, aged 74.’

1
2

print(f»The \»comedian\» is {name}, aged {age}.»)

# Вывод: ‘The «comedian» is Eric Idle, aged 74.’

Словари

Говоря о кавычках, будьте внимательны при работе со . Вы можете вставить значение словаря по его ключу, но сам ключ нужно вставлять в одиночные кавычки внутри f-строки. Сама же f-строка должна иметь двойные кавычки.

Вот так:

Python

comedian = {‘name’: ‘Eric Idle’, ‘age’: 74}

print(f»The comedian is {comedian}, aged {comedian}.»)
# Вывод: The comedian is Eric Idle, aged 74.

1
2
3
4

comedian={‘name»Eric Idle’,’age’74}

print(f»The comedian is {comedian}, aged {comedian}.»)

# Вывод: The comedian is Eric Idle, aged 74.

Обратите внимание на количество возможных проблем, если допустить ошибку в синтаксисе SyntaxError:

Python

>>> comedian = {‘name’: ‘Eric Idle’, ‘age’: 74}
>>> f’The comedian is {comedian}, aged {comedian}.’
File «<stdin>», line 1
f’The comedian is {comedian}, aged {comedian}.’
^
SyntaxError: invalid syntax

1
2
3
4
5
6

>>>comedian={‘name»Eric Idle’,’age’74}

>>>f’The comedian is {comedian}, aged {comedian}.’

File»<stdin>»,line1

f’The comedian is {comedian}, aged {comedian}.’

^

SyntaxErrorinvalid syntax

Если вы используете одиночные кавычки в ключах словаря и снаружи f-строк, тогда кавычка в начале ключа словаря будет интерпретирован как конец строки.

Скобки

Чтобы скобки появились в вашей строке, вам нужно использовать двойные скобки:

Python

print(f»`74`»)

# Вывод: ‘{ 74 }’

1
2
3

print(f»`74`»)

 
# Вывод: ‘{ 74 }’

Обратите внимание на то, что использование тройных скобок приведет к тому, что в строке будут только одинарные:

Python

print( f»{`74`}» )

# Вывод: ‘{ 74 }’

1
2
3

print(f»{`74`}»)

 
# Вывод: ‘{ 74 }’

Однако, вы можете получить больше отображаемых скобок, если вы используете больше, чем три скобки:

Python

print(f»{{`74`}}»)

# Вывод: ‘`74`’

1
2
3

print(f»{{`74`}}»)

 
# Вывод: ‘`74`’

Бэкслеши

Как вы видели ранее, вы можете использовать бэкслеши в части строки f-string. Однако, вы не можете использовать бэкслеши в части выражения f-string:

Python

>>> f»{\»Eric Idle\»}»
File «<stdin>», line 1
f»{\»Eric Idle\»}»
^
SyntaxError: f-string expression part cannot include a backslash

1
2
3
4
5

>>>f»{\»Eric Idle\»}»

File»<stdin>»,line1

f»{\»Eric Idle\»}»

^

SyntaxErrorf-stringexpression part cannot includeabackslash

Вы можете проработать это, оценивая выражение заранее и используя результат в f-строк:

Python

name = «Eric Idle»
print(f»{name}»)

# Вывод: ‘Eric Idle’

1
2
3
4

name=»Eric Idle»

print(f»{name}»)

 
# Вывод: ‘Eric Idle’

Междустрочные комментарии

Выражения не должны включать комментарии с использованием символа #. В противном случае, у вас будет ошибка синтаксиса SyntaxError:

Python

>>> f»Eric is {2 * 37 #Oh my!}.»
File «<stdin>», line 1
f»Eric is {2 * 37 #Oh my!}.»
^
SyntaxError: f-string expression part cannot include ‘#’

1
2
3
4
5

>>>f»Eric is {2 * 37 #Oh my!}.»

File»<stdin>»,line1

f»Eric is {2 * 37 #Oh my!}.»

^

SyntaxErrorf-stringexpression part cannot include’#’

Использование модуля pickle на своих объектах

протокол

Сериализация собственных объектов.

  • Если вы хотите, чтобы после десериализации вашего класса был вызыван , вы можете определить , который должен вернуть кортеж аргументов, который будет отправлен в . Заметьте, что этот метод работает только с классами старого стиля.

  • Для классов нового стиля вы можете определить, какие параметры будут переданы в во время десериализации. Этот метод так же должен вернуть кортеж аргументов, которые будут отправлены в .

  • Вместо стандартного атрибута , где хранятся атрибуты класса, вы можете вернуть произвольные данные для сериализации. Эти данные будут переданы в во время десериализации.

  • Если во время десериализации определён , то данные объекта будут переданы сюда, вместо того чтобы просто записать всё в . Это парный метод для : когда оба определены, вы можете представлять состояние вашего объекта так, как вы только захотите.

  • Если вы определили свой тип (с помощью Python’s C API), вы должны сообщить Питону как его сериализовать, если вы хотите, чтобы он его сериализовал. вызывается когда сериализуется объект, в котором этот метод был определён. Он должен вернуть или строку, содержащую имя глобальной переменной, содержимое которой сериализуется как обычно, или кортеж. Кортеж может содержать от 2 до 5 элементов: вызываемый объект, который будет вызван, чтобы создать десериализованный объект, кортеж аргументов для этого вызываемого объекта, данные, которые будут переданы в (опционально), итератор списка элементов для сериализации (опционально) и итератор словаря элементов для сериализации (опционально).

  • Иногда полезно знать версию протокола, реализуя . И этого можно добиться, реализовав вместо него . Если реализован, то предпочтение при вызове отдаётся ему (вы всё-равно должны реализовать для обратной совместимости).

Число Пи из библиотеки math

Первой важной математической константой является число Пи (π). Оно обозначает отношение длины окружности к диаметру, его значение 3,141592653589793

Чтобы получить к нему доступ, сначала импортируем библиотеку math следующим образом:

Python

import math

1 importmath

Затем можно получить доступ к константе, вызывая :

Python

math.pi

1 math.pi

Вывод

Shell

3.141592653589793

1 3.141592653589793

Данную константу можно использовать для вычисления площади или длины окружности. Далее представлен пример простого кода, с помощью которого это можно сделать:

Python

import math

radius = 2
print(‘Площадь окружности с радиусом 2 равна:’, math.pi * (radius ** 2))

1
2
3
4

importmath

radius=2

print(‘Площадь окружности с радиусом 2 равна:’,math.pi*(radius**2))

Вывод

Shell

Площадь окружности с радиусом 2 равна: 12.566370614359172

1 Площадьокружностисрадиусом2равна12.566370614359172

Мы возвели радиус во вторую степень и умножили значение на число Пи, как и следовало сделать в соответствии с формулой πr2.

Возведение в степень (**)

Нетипичный оператор для большинства других языков программирования. Тем он и удобен. Парная «звёздочка» (**) выполняет классическое математическое возведение числа «a» в степень «b»:

И показатель степени, и основание могут быть отрицательными:

И дробными:

Операндов у возведения в степень также может быть несколько. В таком случае, оператор «**» работает, как право-ассоциативный (т.е. операции выполняются справа-налево):

В завершении — про приоритет операций. Если в выражении используются разные операторы, то порядок их выполнения будет следующим:

  1. возведение в степень;
  2. умножение, деление, целочисленное деление и деление по модулю;
  3. сложение и вычитание.

Создание произвольных последовательностей

Магия контейнеров

  • Возвращает количество элементов в контейнере. Часть протоколов для изменяемого и неизменяемого контейнеров.

  • Определяет поведение при доступе к элементу, используя синтаксис . Тоже относится и к протоколу изменяемых и к протоколу неизменяемых контейнеров. Должен выбрасывать соответствующие исключения: если неправильный тип ключа и если ключу не соответствует никакого значения.

  • Определяет поведение при присваивании значения элементу, используя синтаксис . Часть протокола изменяемого контейнера. Опять же, вы должны выбрасывать и в соответсвующих случаях.

  • Определяет поведение при удалении элемента (то есть ). Это часть только протокола для изменяемого контейнера. Вы должны выбрасывать соответствующее исключение, если ключ некорректен.

  • Должен вернуть итератор для контейнера. Итераторы возвращаются в множестве ситуаций, главным образом для встроенной функции и в случае перебора элементов контейнера выражением . Итераторы сами по себе объекты и они тоже должны определять метод , который возвращает .

  • Вызывается чтобы определить поведения для встроенной функции . Должен вернуть обратную версию последовательности. Реализуйте метод только если класс упорядоченный, как список или кортеж.

  • предназначен для проверки принадлежности элемента с помощью и . Вы спросите, почему же это не часть протокола последовательности? Потому что когда не определён, Питон просто перебирает всю последовательность элемент за элементом и возвращает если находит нужный.
  • используется при наследовании от . Определяет поведение для для каждого случая, когда пытаются получить элемент по несуществующему ключу (так, например, если у меня есть словарь и я пишу когда не является ключом в словаре, вызывается ).

Разделение строки с использованием разделителя

Python может разбивать строки по любому разделителю, указанному в качестве параметра метода . Таким разделителем может быть, например, запятая, точка или любой другой символ (или даже несколько символов).

Давайте рассмотрим пример, где в
качестве разделителя выступает запятая
и точка с запятой (это можно использовать
для работы с CSV-файлами).

print("Python2, Python3, Python, Numpy".split(','))
print("Python2; Python3; Python; Numpy".split(';'))

Результат:

Как видите, в результирующих списках
отсутствуют сами разделители.

Если вам нужно получить список, в
который войдут и разделители (в качестве
отдельных элементов), можно разбить
строку по шаблону, с использованием
регулярных выражений (см. ). Когда вы берете шаблон в
захватывающие круглые скобки, группа
в шаблоне также возвращается как часть
результирующего списка.

import re

sep = re.split(',', 'Python2, Python3, Python, Numpy')
print(sep)
sep = re.split('(,)', 'Python2, Python3, Python, Numpy')
print(sep)

Результат:

Если вы хотите, чтобы разделитель был частью каждой подстроки в списке, можно обойтись без регулярных выражений и использовать list comprehensions:

text = 'Python2, Python3, Python, Numpy'
sep = ','

result = 
print(result)

Результат:

Целые числа (int)

В Python любое число, состоящее из десятичных цифр без префикса, интерпретируется как десятичное число типа

Целые числа в Python представлены только одним типом – PyLongObject, реализация которого лежит в longobject.c, а сама структура выглядит так:

Любое целое число состоит из массива цифр переменной длины, поэтому в Python 3 в переменную типа может быть записано число неограниченной длины. Единственное ограничение длины – это размер оперативной памяти.

Целые числа могут записываться не только как десятичные, но и как двоичные, восьмеричные или шестнадцатеричные. Для этого перед числом нужно написать символы:

  • 0b (0B) – для двоичного представления;
  • 0o (0O) – для восьмеричного представления;
  • 0x (0X) – для шестнадцатеричного представления.

Дополнение 1: Как вызывать магические методы

Магический метод Когда он вызывается (пример) Объяснение
вызывается при создании экземпляра
вызывается при создании экземпляра
, , etc. Вызывается для любого сравнения
Унарный знак плюса
Унарный знак минуса
Побитовая инверсия
Преобразование, когда объект используется как индекс
, Булевое значение объекта
Пытаются получить несуществующий атрибут
Присвоение любому атрибуту
Удаление атрибута
Получить любой атрибут
Получение элемента через индекс
Присвоение элементу через индекс
Удаление элемента через индекс
Итерация
, Проверка принадлежности с помощью
«Вызов» экземпляра
оператор менеджеров контекста
оператор менеджеров контекста
Сериализация
Сериализация

Программа на Python с переменными

Рассмотрим пример иллюстрирующий математическую модель описывающий
траекторию полета мяча в воздухе. Из второго закона Ньютона,
предполагая незначительное сопротивление воздуха, мы можем вывести
зависимость вертикального положения \( y \) мяча от времени
\( t \):
$$
\begin{equation*}
\tag{1}
y = v_0 t -0.5 g t^2
\end{equation*}
$$

где \( v_0 \) — начальная скорость, \( g \) — ускорение
свободного падения, значение которого положим равным \( 9.81 \) м/c \( ^2 \).

Сценарий

Рассмотрим сценарий на Python для вычисления по простой
формуле. Предположим, что сценарий у нас сохранен в виде текста в
файле ball.py

# -*- coding: utf-8 -*-
# Программа для вычисления положения мяча при вертикальном движении

v0 = 5       # Начальная скорость
g = 9.81     # Ускорение свободного падения
t = 0.6      # Время

y = v0*t - 0.5*g*t**2

Разбор сценария

Сценарий на языке Python — это текстовый файл (в нашем случае
ball.py), содержащий некоторые
инструкции. Мы можем читать сценарий и понимать, что программа
способна делать, но сам сценарий не выполняет никаких действий на
компьютере, пока интерпретатор Python не прочитает текст сценария и не
преобразует его в некоторые действия.

Когда сценарий запущен в интерпретаторе Python, он разбирается и выполняется
построчно. Первые две строки

# -*- coding: utf-8 -*-
# Программа для вычисления положения мяча при вертикальном движении

являются

комментариями*, т.е. как только встречается символ ,
интерпретатор Python воспринимает оставшуюся часть строки как
комментарий, пропускает ее и переходит к следующей строки.

Замечание

В первой строке указывается кодировка,
в которой сохранен файл сценария (в нашем случае *— это UTF8). Если в
сценарии не предполагается использование не ASCII символов, то первую
строку можно опустить. Однако, мы можем использовать
кириллический текст, поэтому в наших сценариях мы всегда будем
указывать кодировку.

Следующие 3 строки, интерпретируемые Pyhton:

v0 = 5       # Начальная скорость
g = 9.81     # Ускорение свободного падения
t = 0.6      # Время

В Python выражения вида известны как операторы
присваивания. Значение правой части, в нашем случае целое число
, становится объектом, а имя переменной слева *— именованной
ссылкой на этот объект. Всякий раз, когда мы запишем , Python
заменит ее целым значением . Выражение создает новое
имя для того же целого объекта со значением , а не копирует
объект.

Таким образом, прочитав эти строки интерпретатор Python знает три
переменных и их значения. Эти переменные используются
интерпретатором в следующей строке, фактически реализующей некоторую
формулу

y = v0*t - 0.5*g*t**2

В этой строке Python интерпретирует как оператор умножения, *—
вычитания, *— возведения в степень (естественно, и
интерпретируются как операторы сложения и деления соответственно). В
результате вычисляется значение по формуле в правой части выражения,
которое присваивается переменной с именем . Последняя строка
сценария

print y

выводит на печать значение переменной . Таким образом при запуске
сценария ball.by на экране будет выведено
число . В тексте сценария имеются также и пустые строки, которые
пропускаются интерпретатором Python. Они добавлены для лучшей
читабельности кода.

Запуск сценариев Python

Сценарии Python обычно имеют расширение , но это не является
необходимым. Как мы уже говорили, рассмотренный выше сценарий сохранен
в файле ball.py. Запустить его можно
следующей командой:

python ball.py

Такая команда явно указывает, что в качестве интерпретатора файла
должен использоваться Python. Также могут задаваться
аргументы командной строки, который загружается сценарием.

Команда должна запускаться в консольном окне
(терминал в Unix, Командная строка (Command Prompt) в MS Windows).

В случае, когда файлу установлено разрешение на выполнение (команда
) в ОС Unix (Linux), сценарий можно запускать
командой, сценарий можно запускать командой

./ball.py

В этом случае первая строка сценария должна содержать описание
интерпретатора:

#!/usr/bin/env python

В ОС MS Windows можно писать просто

ball.py

вместо , если расширение ассоциировано с
интерпретатором Python.

Условные операторы

Python поддерживает дополнительный метод принятия решений, называемую условным выражением. (Он также упоминается как условный оператор или тернарный оператор в различных местах документации Python).

В своей простейшей форме синтаксис условного выражения выглядит следующим образом:

<expr1> if <conditional_expr> else <expr2>

Это отличается от форм операторов , перечисленных выше, потому что это не управляющая структура направляет поток выполнения программы. Он действует скорее как оператор, определяющий выражение. В приведенном выше примере сначала вычисляется . Если истина, то выражение вычисляется как . Если ложь, то выражение вычисляется как .

Обратите внимание на не очевидный порядок: сначала вычисляется среднее выражение, и на основе этого результата возвращается одно из выражений на концах. Вот несколько примеров, которые, надеюсь, помогут прояснить ситуацию:

raining = False
print("Let's go to the", 'beach' if not raining else 'library')

raining = True
print("Let's go to the", 'beach' if not raining else 'library')


age = 12
s = 'minor' if age < 21 else 'adult'
s


'yes' if ('qux' in ) else 'no'

Примечание: условное выражение Python аналогично синтаксису ? : , используемому многими другими языками-C, Perl и Java. На самом деле, оператор ?: обычно называют тернарным оператором в этих языках, что, вероятно, является причиной того, что условное выражение Python иногда называют тернарным оператором Python.

Обычно условное выражение используется для выбора назначения переменной. Например, предположим, что вы хотите найти большее из двух чисел. Конечно, есть встроенная функция max (), которая делает именно это (и многое другое), что вы могли бы использовать. Но предположим, вы хотите написать свой собственный код с нуля.

Вы можете использовать стандартный оператор с предложением :

if a > b:
    m = a
else:
    m = b

Но условный оператор короче и, возможно, более читабельнее:

m = a if a > b else b

Не забывайте, что условное выражение ведет себя как синтаксическое выражение. Его можно использовать как часть более длинного выражения. Условное выражение имеет более низкий приоритет, чем практически все остальные операторы, поэтому для его группировки необходимы круглые скобки.

В следующем примере оператор + связывается более плотно, чем условное выражение, поэтому сначала вычисляются +x и y + 2, а затем условное выражение. Скобки во втором случае не нужны и результат не меняется:

x = y = 40

z = 1 + x if x > y else y + 2
z


z = (1 + x) if x > y else (y + 2)
z

Если вы хотите, чтобы условное выражение было вычислено первым, вам нужно окружить его группирующими скобками. В следующем примере сначала вычисляется (x, если x > y, иначе y). В результате получается y, который равен 40, поэтому присваивается z 1 + 40 + 2 = 43:

x = y = 40

z = 1 + (x if x > y else y) + 2
z

Если вы используете условное выражение как часть более крупного выражения, вероятно, будет хорошей идеей использовать группирующие скобки для уточнения, даже если они не нужны.

Условные выражения также используют оценку короткого замыкания, как и составные логические выражения. Части условного выражения не вычисляются, если в этом нет необходимости.

В выражении , если иначе :

Если <conditional_expr> правда, <expr1> и <expr2> не вычисляется.
Если <conditional_expr> имеет значение false, то возвращается <expr2> и <expr1> не вычисляется.

Вы можете проверить это, используя термины, которые вызвали бы ошибку:

'foo' if True else 1/0

1/0 if False else 'bar'

В обоих случаях условия 1/0 не оцениваются, поэтому никаких исключений не возникнет.

Условные выражения также могут быть объединены вместе, как своего рода альтернативная структура , как показано здесь:

s = ('foo' if (x == 1) else
     'bar' if (x == 2) else
     'baz' if (x == 3) else
     'qux' if (x == 4) else
     'quux'
)
s

Неясно, имеет ли это какое-либо существенное преимущество перед соответствующим оператором , но это синтаксически правильно для Python.

Функция экспоненты exp() в Python

Библиотека Math в Python поставляется с функцией , которую можно использовать для вычисления значения . К примеру, — экспонента от . Значение равно .

Метод может быть использован со следующим синтаксисом:

Python

math.exp(x)

1 math.exp(x)

Параметр может быть положительным или отрицательным числом. Если не число, метод возвращает ошибку. Рассмотрим пример использования данного метода:

Python

import math

# Инициализация значений
an_int = 6
a_neg_int = -8
a_float = 2.00

# Передача значений методу exp() и вывод
print(math.exp(an_int))
print(math.exp(a_neg_int))
print(math.exp(a_float))

1
2
3
4
5
6
7
8
9
10
11

importmath

 
# Инициализация значений

an_int=6

a_neg_int=-8

a_float=2.00

 
# Передача значений методу exp() и вывод

print(math.exp(an_int))

print(math.exp(a_neg_int))

print(math.exp(a_float))

Вывод

Shell

403.4287934927351
0.00033546262790251185
7.38905609893065

1
2
3
403.4287934927351
0.00033546262790251185
7.38905609893065

Мы объявили три переменные и присвоили им значения с различными числовыми типами данных. Мы передали значения методу для вычисления их экспоненты.

Мы также можем применить данный метод для встроенных констант, что продемонстрировано ниже:

Python

import math

print(math.exp(math.e))
print(math.exp(math.pi))

1
2
3
4

importmath

print(math.exp(math.e))

print(math.exp(math.pi))

Вывод

Shell

15.154262241479262
23.140692632779267

1
2
15.154262241479262
23.140692632779267

При передаче не числового значения методу будет сгенерирована , как показано далее:

Python

import math

print(math.exp(«20»))

1
2
3

importmath

print(math.exp(«20»))

Вывод

Shell

Traceback (most recent call last):
File «C:/Users/admin/mathe.py», line 3, in <module>
print (math.exp(«20»))
TypeError: a float is required

1
2
3
4

Traceback(most recent call last)

File»C:/Users/admin/mathe.py»,line3,in<module>

print(math.exp(«20»))

TypeErrorafloatisrequired

Как видно из примера выше, генерируется ошибка .

Функции и реализация

Различные арифметические операции могут выполняться с десятичными или числовыми данными для улучшения результата.

Мы можем определить числа с десятичной запятой, используя как показано ниже.

Синтаксис:

import decimal
variable = decimal.Decimal(decimal-number)

Кроме того, мы можем контролировать значение точности результатов чисел с десятичной запятой, используя встроенную функцию десятичного модуля — .

Синтаксис:

decimal.getcontext().prec = precision value

Описанные ниже функции помогают нам выполнять арифметические операции с десятичной запятой эффективно и с большой скоростью.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector