Коэффициент фехнера

Содержание:

Введение

Все чаще объектами статистического анализа становятся не массивы (таблицы) значений, а временные ряды. Такие ряды формируются при наблюдениях за природными процессами и явлениями, изучении социологических или макроэкономических показателей, при промышленном производстве и сбыте продукции. Главное, что отличает временной ряд от других типов данных – это то, что номер (время) наблюдения имеет значение. То есть, важен не только результат измерения, но и тот момент времени, когда оно выполнено. К сожалению, при применении статистических методов на этот нюанс часто не обращают внимания. Однако, именно эта «мелочь» приводит к очень серьезным и нетривиальным следствиям с точки зрения обработки таких сигналов. Самые обычные формулы, описанные во всех учебниках, внезапно отказываются работать. А попытки их применения «в лоб» иногда дают, мягко говоря, весьма неожиданные результаты. Например, статистическая связь между числом пиратов и глобальным потеплением оказывается не просто «значимой», а «практически достоверной». Что удивительно, столкнувшись с такой ситуацией, даже достаточно грамотные исследователи не всегда понимают, где же тут «порылась собака» . Данные вроде бы правильные, математика (как и жена Цезаря) – точно вне подозрений. А результат – ни в какие ворота… А Вы твердо уверены, что всегда правильно оцениваете значимость таких корреляций?

Литература

  • Гмурман В. Е. Теория вероятностей и математическая статистика: Учебное пособие для вузов. — 10-е издание, стереотипное. — Москва: Высшая школа, 2004. — 479 с. — ISBN 5-06-004214-6.
  • Елисеева И. И., Юзбашев М. М. Общая теория статистики: Учебник / Под ред. И. И. Елисеевой. — 4-е издание, переработанное и дополненное. — Москва: Финансы и Статистика, 2002. — 480 с. — ISBN 5-279-01956-9.
  • Общая теория статистики: Учебник / Под ред. Р. А. Шмойловой. — 3-е издание, переработанное. — Москва: Финансы и Статистика, 2002. — 560 с. — ISBN 5-279-01951-8.
  • Суслов В. И., Ибрагимов Н. М., Талышева Л. П., Цыплаков А. А. Эконометрия. — Новосибирск: СО РАН, 2005. — 744 с. — ISBN 5-7692-0755-8.

9.1.2. Проверка статистических гипотез о связи переменных

Выборочный коэффициент корреляции оценивает подразумеваемую исследователем реальную связь между переменными. Как и в случае оценки среднего значения, нас интересуют два вопроса: (1) Насколько сильна связь между переменными; (2) Насколько надежна наша оценка. Сила связи между переменными по всей генеральной совокупности существует объективно. Если ее измерять корреляцией, то она будет выражаться числом от −1 до 1. Выборочная корреляция этих переменных будет колебаться вокруг истинного показателя силы связи. Трудность состоит в том, что, получив выборочную корреляцию, мы не можем знать, ни насколько она отклоняется от истинного значения, ни даже в какую сторону. В случае корреляции оценка обычно выражается в терминах значимости.

Проделаем небольшое упражнение.

Упражнение 9.1.2(1). Возьмите две симметричные монеты достоинством в один рубль и один евро. Проведите серию четырех подбрасываний пары монет и запишите результаты в виде ​\( (x_1, y_1),\dots,(x_4, y_4) \)​ , полагая

​\( x_i=0 \)​, если рубль выпал цифрой;

​\( x_i=1 \), если рубль выпал гербом;

​\( y_i=0 \), если евро выпал цифрой;

​\( y_i=1 \), если евро выпал гербом.

Подсчитайте коэффициент корреляции Пирсона. Истинная корреляция между результатами двух монет равна, разумеется, нулю. Повторите процедуру несколько раз и убедитесь, что нулевое значение выборочного коэффициента корреляции выпадает примерно один раз из трех. При многократном повторении опыта можно убедиться, что его результат имеет некоторое распределение, симметричное относительно нуля. Это распределение зависит от объема выборки n: чем больше n, тем меньше дисперсия распределения, тем ближе к нулю ее вероятные значения.

В таблице 9.1.2(2) приведены двухсторонние квантили распределения выборочного коэффициента корреляции по Пирсону для ​\( n=10 \)​. Они рассчитаны для выборок, полученных испытаниями двух нормально распределенных случайных величин, теоретическая корреляция между которыми равна нулю. Дихотомический результат подбрасывания монеты не распределен нормально, однако некоторое представление о возможных результатах наших испытаний табличный квантиль все же дает.

Таблица 9.1.2(2) Двусторонние квантили распределения коэффициента Пирсона для n = 10

​\( \alpha \)​ 0.05 0.025 0.01 0.005
​\( r_\alpha(10) \)​ 0.497 0.576 0.658 0.709

Обычно при исследовании связи переменных статистической гипотезой ​\( H_0 \)​ будет гипотеза об отсутствии связи, т.е. о независимости переменных. Альтернативная гипотеза \( H_1 \)​ (т.е. гипотеза, к которой мы склоняемся, получив большие по модулю значения выборочной корреляции) будет утверждать только наличие связи . Можно оценить значимость относительно данного результата (полученной парной выборки) гипотез о других значениях теоретической корреляции, но это требует некоторых дополнительных усилий (см. подпараграф ). Если истинна гипотеза \( H_0 \)​, то выборочный коэффициент корреляции будет принимать значения, более или менее близкие к нулю. Если выборочная корреляция принимает достаточно большое по модулю значение, которому соответствует значимость, измеряемая маленьким числом, то мы склоняемся к гипотезе \( H_1 \)​ о наличии связи, но без указания точного значения теоретической корреляции.

Можно заметить, что если верна гипотеза  об отсутствии зависимости между случайными величинами, то выборочный коэффициент при \( n=10 \) может принимать тем не менее довольно большие значения, так что уровень значимости 0.05 для принятия гипотезы о зависимости случайных величин требует, чтобы выборочный коэффициент корреляции достигал почти 0.5 (см. ). В связи с этим надо иметь в виду, что даже выборочная корреляция, например 0.6, вполне может согласовываться с истинной корреляцией, равной 0.2 .

Автокорреляция

Авто или самокорреляция — это корреляция переменной со значением, которое приняла переменная,Иксединиц (времени) в прошлом. Например, температура воздуха в месте может быть автоматически коррелирована с температурой воздуха того же места 12 месяцев назад. Автокорреляция имеет значение для переменных, которые индексируются по шкале, которая может быть упорядочена, то есть по порядковой шкале. Шкала времени является примером порядковой шкалы.

Так же, как корреляция, автокорреляция может быть линейной или нелинейной, положительной или отрицательной, или она может быть нулевой.

Формула для автокорреляции при использовании длялинейноАвтокоррелированная связь между переменной и k-lagged версией себя выглядит следующим образом:

Формула для k-лаговой автокорреляции Y

Давайте немного углубимся в понимание автокорреляции, посмотрев на другой набор данных:

Среднемесячная максимальная температура в Бостоне, штат Массачусетс, с января 1998 года по июнь 2019 года. Источник данных о погоде:Национальные центры экологической информации

На приведенном выше графике показана среднемесячная максимальная температура по городу Бостон. Он рассчитывается путем усреднения за каждый месяц максимальной суточной температуры, зарегистрированной метеостанцией в этом месяце, за период с января 1998 года по июнь 2019 года.

Давайте построим график зависимости температуры от времени для разных лагов.

График LAG 12 показывает сильную положительную линейную зависимость между средней максимальной температурой за месяц и средней максимальной за тот же месяц год назад.

Существует также сильная отрицательная автокорреляция между точками данных, которые разнесены на шесть месяцев, то есть на LAG 6.

В целом в этих данных присутствует сильный сезонный сигнал, который можно ожидать в данных о погоде такого рода.

Ниже приведена автокорреляционная тепловая карта, показывающая корреляцию между каждой комбинациейTа такжеТ-к, Для нас интересная колонка выделена синим цветом.

Корреляционная тепловая карта

В первом столбце интересующий квадрат равен единице (среднемесячный максимум, TMINUS12) и, возможно, квадрату (среднемесячный максимум, TMINUS6). Теперь, если вы вернетесь к коллажу рассеянного графика, вы заметите, что отношение для всех других комбинаций лагов является нелинейным. Так в любомлинейная сезонная модельмы попытаемся построить для этих данных полезность значений коэффициента корреляции, которые были сгенерированы для этих нелинейных отношений (то есть для оставшихся квадратов на тепловой карте), строго ограничена, и их не следует использоватьдаже если некоторые из них имеют большие значения.

Помните, что (авто) коэффициенты корреляции при расчете с использованием формул, которые упоминались ранее, полезны только тогда, когда отношение является линейным Если связь нелинейная, нам нужен другой метод для количественной оценки силы нелинейной связи. Например,Ранговой коэффициент корреляции Спирменаможет быть использован для количественной оценки силы взаимосвязи между переменными, которые имеют нелинейные,монотонныйотношения.

Вот код Python для построения временных рядов температуры, коллажа рассеяния и тепловой карты:

Python-код для построения температурных рядов, автокорреляционных графиков рассеяния и корреляционной тепловой карты

А вот инабор данных,

Примеры решений онлайн: линейная регрессия

Простая выборка

Пример 1. Имеются данные средней выработки на одного рабочего Y (тыс. руб.) и товарооборота X (тыс. руб.) в 20 магазинах за квартал. На основе указанных данных требуется:
1) определить зависимость (коэффициент корреляции) средней выработки на одного рабочего от товарооборота,
2) составить уравнение прямой регрессии этой зависимости.

Пример 2. С целью анализа взаимного влияния зарплаты и текучести рабочей силы на пяти однотипных фирмах с одинаковым числом работников проведены измерения уровня месячной зарплаты Х и числа уволившихся за год рабочих Y:
X 100 150 200 250 300
Y 60 35 20 20 15
Найти линейную регрессию Y на X, выборочный коэффициент корреляции.

Пример 3. Найти выборочные числовые характеристики и выборочное уравнение линейной регрессии $y_x=ax+b$. Построить прямую регрессии и изобразить на плоскости точки $(x,y)$ из таблицы. Вычислить остаточную дисперсию. Проверить адекватность линейной регрессионной модели по коэффициенту детерминации.

Пример 4. Вычислить коэффициенты уравнения регрессии. Определить выборочный коэффициент корреляции между плотностью древесины маньчжурского ясеня и его прочностью. Решая задачу необходимо построить поле корреляции, по виду поля определить вид зависимости, написать общий вид уравнения регрессии Y на Х, определить коэффициенты уравнения регрессии и вычислить коэффициенты корреляции между двумя заданными величинами.

Пример 5. Компанию по прокату автомобилей интересует зависимость между пробегом автомобилей X и стоимостью ежемесячного технического обслуживания Y. Для выяснения характера этой связи было отобрано 15 автомобилей. Постройте график исходных данных и определите по нему характер зависимости. Рассчитайте выборочный коэффициент линейной корреляции Пирсона, проверьте его значимость при 0,05. Постройте уравнение регрессии и дайте интерпретацию полученных результатов.

Корреляционная таблица

Пример 6. Найти выборочное уравнение прямой регрессии Y на X по заданной корреляционной таблице

Пример 7. В таблице 2 приведены данные зависимости потребления Y (усл. ед.) от дохода X (усл. ед.) для некоторых домашних хозяйств.
1. В предположении, что между X и Y существует линейная зависимость, найдите точечные оценки коэффициентов линейной регрессии.
2. Найдите стандартное отклонение $s$ и коэффициент детерминации $R^2$.
3. В предположении нормальности случайной составляющей регрессионной модели проверьте гипотезу об отсутствии линейной зависимости между Y и X.
4. Каково ожидаемое потребление домашнего хозяйства с доходом $x_n=7$ усл. ед.? Найдите доверительный интервал для прогноза.
Дайте интерпретацию полученных результатов. Уровень значимости во всех случаях считать равным 0,05.

Решение об исследовании зависимости (4 страницы)

Пример 8. Распределение 100 новых видов тарифов на сотовую связь всех известных мобильных систем X (ден. ед.) и выручка от них Y (ден.ед.) приводится в таблице:
Необходимо:
1) Вычислить групповые средние и построить эмпирические линии регрессии;
2) Предполагая, что между переменными X и Y существует линейная корреляционная зависимость:
А) найти уравнения прямых регрессии, построить их графики на одном чертеже с эмпирическими линиями регрессии и дать экономическую интерпретацию полученных уравнений;
Б) вычислить коэффициент корреляции, на уровне значимости 0,05 оценить его значимость и сделать вывод о тесноте и направлении связи между переменными X и Y;
В) используя соответствующее уравнение регрессии, оценить среднюю выручку от мобильных систем с 20 новыми видами тарифов.

Коэффициент корреляции

Пример 9. На основании 18 наблюдений установлено, что на 64% вес X кондитерских изделий зависит от их объема Y. Можно ли на уровне значимости 0,05 утверждать, что между X и Y существует зависимость?

Пример 10. Исследование 27 семей по среднедушевому доходу (Х) и сбережениям (Y) дало результаты: $\overline{X}=82$ у.е., $S_x=31$ у.е., $\overline{Y}=39$ у.е., $S_y=29$ у.е., $\overline{XY} =3709$ (у.е.)2. При $\alpha=0,05$ проверить наличие линейной связи между Х и Y. Определить размер сбережений семей, имеющих среднедушевой доход $Х=130$ у.е.

Нужно решить задачи по на тему регрессия и корреляция?

Оставьте заявку сегодня

Корреляция и диверсификация

Как знания о корреляции активов могут помочь лучше вкладывать деньги? Думаю, вы все хорошо знакомы с золотым правилом инвестора — не клади все яйца в одну корзину. Речь, естественно, идёт о диверсификации инвестиционных активов в портфеле. Корреляция и диверсификация неразрывно связаны, что понятно даже из названия — английское diversify означает «разнообразить», а как коэффициент корреляции как раз показывает схожесть или различие двух явлений.

Другими словами, инвестировать в финансовые инструменты с высокой корреляцией не очень хорошо. Почему? Все просто — похожие активы плохо диверсифицируются. Вот пример портфеля двух активов с корреляцией +1:

Как видите, график портфеля во всех деталях повторяет графики каждого из активов — рост и падение обоих активов синхронны. Диверсификация в теории должна снижать инвестиционные риски за счёт того, что убытки одного актива перекрываются за счёт прибыли другого, но здесь этого не происходит совершенно. Все показатели просто усредняются:

Портфель даёт небольшой выигрыш в снижении рисков — но только по сравнению с более доходным Активом 1. А так, никаких преимуществ по сути нет, нам лучше просто вложить все деньги в Актив 1 и не париться.

А вот пример портфеля двух активов с корреляцией близкой к 0:

Где-то графики следуют друг за другом, где-то в противоположных направлениях, какой-либо однозначной связи не наблюдается. И вот здесь диверсификация уже работает:

Мы видим заметное снижение СКО, а значит портфель будет менее волатильным и более стабильно расти. Также видим небольшое снижение максимальной просадки, особенно если сравнивать с Активом 1. Инвестиционные инструменты без корреляции достаточно часто встречаются и из них имеет смысл составлять портфель.

Впрочем, это не предел. Наиболее эффективный инвестиционный портфель можно получить, используя активы с корреляцией -1:

Уже знакомое вам «зеркало» позволяет довести показатели риска портфеля до минимальных:

Несмотря на то, что каждый из активов обладает определенным риском, портфель получился фактически безрисковым. Какая-то магия, не правда ли? Очень жаль, но на практике такого не бывает, иначе инвестирование было бы слишком лёгким занятием.

Проверяем значимость коэффициента корреляции (проверяем гипотезу зависимости).

Поскольку оценка коэффициента корреляции вычислена на конечной выборке, и поэтому может отклоняться от своего генерального значения,
необходимо проверить значимость коэффициента корреляции. Проверка производится с помощью t-критерия:

t =
Rx,y
n — 2
1 — R2x,y
     ( 2.1 )

Случайная величина t следует t-распределению Стьюдента
и по таблице t-распределения необходимо найти критическое значение критерия (tкр.α) при заданном уровне
значимости α. Если вычисленное по формуле ( 2.1 ) t по модулю окажется меньше
чем tкр.α, то зависимости между случайными величинами X и Y нет. В противном случае, экспериментальные
данные не противоречат гипотезе о зависимости случайных величин.
2.1.t

t =
-0.72028
26 — 2
1 — ( -0.72028)2
 =  -5.08680

2.2.ttкр.αtкр.αα24α0.05tкр.α2.064
Таблица 2    t-распределение

 Число степеней свободы( n — 2 )   α = 0.1   α = 0.05   α = 0.02   α = 0.01   α = 0.002   α = 0.001 
1 6.314 12.706 31.821 63.657 318.31 636.62
2 2.920 4.303 6.965 9.925 22.327 31.598
3 2.353 3.182 4.541 5.841 10.214 12.924
4 2.132 2.776 3.747 4.604 7.173 8.610
5 2.015 2.571 3.365 4.032 5.893 6.869
6 1.943 2.447 3.143 3.707 5.208 5.959
7 1.895 2.365 2.998 3.499 4.785 5.408
8 1.860 2.306 2.896 3.355 4.501 5.041
9 1.833 2.262 2.821 3.250 4.297 4.781
10 1.812 2.228 2.764 3.169 4.144 4.587
11 1.796 2.201 2.718 3.106 4.025 4.437
12 1.782 2.179 2.681 3.055 3.930 4.318
13 1.771 2.160 2.650 3.012 3.852 4.221
14 1.761 2.145 2.624 2.977 3.787 4.140
15 1.753 2.131 2.602 2.947 3.733 4.073
16 1.746 2.120 2.583 2.921 3.686 4.015
17 1.740 2.110 2.567 2.898 3.646 3.965
18 1.734 2.101 2.552 2.878 3.610 3.922
19 1.729 2.093 2.539 2.861 3.579 3.883
20 1.725 2.086 2.528 2.845 3.552 3.850
21 1.721 2.080 2.518 2.831 3.527 3.819
22 1.717 2.074 2.508 2.819 3.505 3.792
23 1.714 2.069 2.500 2.807 3.485 3.767
24 1.711 2.064 2.492 2.797 3.467 3.745
25 1.708 2.060 2.485 2.787 3.450 3.725
26 1.706 2.056 2.479 2.779 3.435 3.707
27 1.703 2.052 2.473 2.771 3.421 3.690
28 1.701 2.048 2.467 2.763 3.408 3.674
29 1.699 2.045 2.462 2.756 3.396 3.659
30 1.697 2.042 2.457 2.750 3.385 3.646
40 1.684 2.021 2.423 2.704 3.307 3.551
60 1.671 2.000 2.390 2.660 3.232 3.460
120 1.658 1.980 2.358 2.617 3.160 3.373
1.645 1.960 2.326 2.576 3.090 3.291

2.2.ttкр.αtttкр.αэкспериментальные данные, с вероятностью 0.95αне противоречат гипотезе

Пример применения метода корреляционного анализа

В Великобритании было предпринято любопытное исследование. Оно посвящено связи курения с раком легких, и проводилось путем корреляционного анализа. Это наблюдение представлено ниже.

Исходные данные для корреляционного анализа

Профессиональная группа

курение

смертность

Фермеры, лесники и рыбаки

77

84

Шахтеры и работники карьеров

137

116

Производители газа, кокса и химических веществ

117

123

Изготовители стекла и керамики

94

128

Работники печей, кузнечных, литейных и прокатных станов

116

155

Работники электротехники и электроники

102

101

Инженерные и смежные профессии

111

118

Деревообрабатывающие производства

93

113

Кожевенники

88

104

Текстильные рабочие

102

88

Изготовители рабочей одежды

91

104

Работники пищевой, питьевой и табачной промышленности

104

129

Производители бумаги и печати

107

86

Производители других продуктов

112

96

Строители

113

144

Художники и декораторы

110

139

Водители стационарных двигателей, кранов и т. д.

125

113

Рабочие, не включенные в другие места

133

146

Работники транспорта и связи

115

128

Складские рабочие, кладовщики, упаковщики и работники разливочных машин

105

115

Канцелярские работники

87

79

Продавцы

91

85

Работники службы спорта и отдыха

100

120

Администраторы и менеджеры

76

60

Профессионалы, технические работники и художники

66

51

Начинаем корреляционный анализ. Решение лучше начинать для наглядности с графического метода, для чего построим диаграмму рассеивания (разброса).

Она демонстрирует прямую связь. Однако на основании только графического метода сделать однозначный вывод сложно. Поэтому продолжим выполнять корреляционный анализ. Пример расчета коэффициента корреляции представлен ниже.

С помощью программных средств (на примере MS Excel будет описано далее) определяем коэффициент корреляции, который составляет 0,716, что означает сильную связь между исследуемыми параметрами. Определим статистическую достоверность полученного значения по соответствующей таблице, для чего нам нужно вычесть из 25 пар значений 2, в результате чего получим 23 и по этой строке в таблице найдем r критическое для p=0,01 (поскольку это медицинские данные, здесь используется более строгая зависимость, в остальных случаях достаточно p=0,05), которое составляет 0,51 для данного корреляционного анализа. Пример продемонстрировал, что r расчетное больше r критического, значение коэффициента корреляции считается статистически достоверным.

Ковариация

Значимым элементом взаимной зависимости величин является ковариация — среднее значение случайной величины (при стремлении выборки к бесконечности) произведения отклонения.

Характеристики ковариации:

  • наличие размерности, которая равна произведению размерности произвольных величин;
  • ковариация независимых друг от друга величин A и B всегда будет равна нулю;
  • величина ковариации A и B не может превышать значение разброса их математического ожидания.

Эти недостатки ковариации делали невозможной её полноценное использование в качестве инструмента корреляционного анализа. Выходом из ситуации стало введение линейного коэффициента корреляции.

Функция КОРРЕЛ для определения взаимосвязи и корреляции в Excel

КОРРЕЛ – функция, применяемая для подсчета коэффициента корреляции между 2-мя массивами. Разберем на четырех примерах все способности этой функции.

Примеры использования функции КОРРЕЛ в Excel

Первый пример. Есть табличка, в которой расписана информация об усредненных показателях заработной платы работников компании на протяжении одиннадцати лет и курсе $. Необходимо выявить связь между этими 2-умя величинами. Табличка выглядит следующим образом:

24

Алгоритм расчёта выглядит следующим образом:

25

Отображенный показатель близок к 1. Результат:

26

Определение коэффициента корреляции влияния действий на результат

Второй пример. Два претендента обратились за помощью к двум разным агентствам для реализации рекламного продвижения длительностью в пятнадцать суток. Каждые сутки проводился социальный опрос, определяющий степень поддержки каждого претендента. Любой опрошенный мог выбрать одного из двух претендентов или же выступить против всех. Необходимо определить, как сильно повлияло каждое рекламное продвижение на степень поддержки претендентов, какая компания эффективней.

27

Используя нижеприведенные формулы, рассчитаем коэффициент корреляции:

  • =КОРРЕЛ(А3:А17;В3:В17).
  • =КОРРЕЛ(А3:А17;С3:С17).

Результаты:

28

Из полученных результатов становится понятно, что степень поддержки 1-го претендента повышалась с каждыми сутками проведения рекламного продвижения, следовательно, коэффициент корреляции приближается к 1. При запуске рекламы другой претендент обладал большим числом доверия, и на протяжении 5 дней была положительная динамика. Потом степень доверия понизилась и к пятнадцатым суткам опустилась ниже изначальных показателей. Низкие показатели говорят о том, что рекламное продвижение отрицательно повлияло на поддержку. Не стоит забывать, что на показатели могли повлиять и остальные сопутствующие факторы, не рассматриваемые в табличной форме.

Анализ популярности контента по корреляции просмотров и репостов видео

Третий пример. Человек для продвижения собственных роликов на видеохостинге Ютуб применяет соцсети для рекламирования канала. Он замечает, что существует некая взаимосвязь между числом репостов в соцсетях и количеством просмотров на канале. Можно ли про помощи инструментов табличного процессора произвести прогноз будущих показателей? Необходимо выявить резонность применения уравнения линейной регрессии для прогнозирования числа просмотров видеозаписей в зависимости от количества репостов. Табличка со значениями:

29

Теперь необходимо провести определение наличия связи между 2-мя показателями по нижеприведенной формуле:

0,7;ЕСЛИ(КОРРЕЛ(A3:A8;B3:B8)>0,7;”Сильная  прямая зависимость”;”Сильная обратная зависимость”);”Слабая зависимость или ее отсутствие”)’ class=’formula’>

Если полученный коэффициент выше 0,7, то целесообразней применять функцию линейной регрессии. В рассматриваемом примере делаем:

30

Теперь производим построение графика:

31

Применяем это уравнение, чтобы определить число просматриваний при 200, 500 и 1000 репостов: =9,2937*D4-206,12. Получаем следующие результаты:

32

Функция ПРЕДСКАЗ позволяет определить число просмотров в моменте, если было проведено, к примеру, двести пятьдесят репостов. Применяем: 0,7;ПРЕДСКАЗ(D7;B3:B8;A3:A8);”Величины не взаимосвязаны”)’ class=’formula’>. Получаем следующие результаты:

33

Особенности использования функции КОРРЕЛ в Excel

Данная функция имеет нижеприведенные особенности:

  1. Не учитываются ячейки пустого типа.
  2. Не учитываются ячейки, в которых находится информация типа Boolean и Text.
  3. Двойное отрицание «–» применяется для учёта логических величин в виде чисел.
  4. Количество ячеек в исследуемых массивах обязаны совпадать, иначе будет выведено сообщение #Н/Д.

Критерии и методы

КРИТЕРИЙ СПИРМЕНА

Коэффициент ранговой корреляции Спирмена – это непараметрический метод, который используется с целью статистического изучения связи между явлениями. В этом случае определяется фактическая степень параллелизма между двумя количественными рядами изучаемых признаков и дается оценка тесноты установленной связи с помощью количественно выраженного коэффициента.

Чарльз Эдвард Спирмен

1. История разработки коэффициента ранговой корреляции

Данный критерий был разработан и предложен для проведения корреляционного анализа в 1904 году Чарльзом Эдвардом Спирменом, английским психологом, профессором Лондонского и Честерфилдского университетов.

2. Для чего используется коэффициент Спирмена?

Коэффициент ранговой корреляции Спирмена используется для выявления и оценки тесноты связи между двумя рядами сопоставляемых количественных показателей. В том случае, если ранги показателей, упорядоченных по степени возрастания или убывания, в большинстве случаев совпадают (большему значению одного показателя соответствует большее значение другого показателя — например, при сопоставлении роста пациента и его массы тела), делается вывод о наличии прямой корреляционной связи. Если ранги показателей имеют противоположную направленность (большему значению одного показателя соответствует меньшее значение другого — например, при сопоставлении возраста и частоты сердечных сокращений), то говорят об обратной связи между показателями.

  1. Коэффициент корреляции Спирмена обладает следующими свойствами:
  2. Коэффициент корреляции может принимать значения от минус единицы до единицы, причем при rs=1 имеет место строго прямая связь, а при rs= -1 – строго обратная связь.
  3. Если коэффициент корреляции отрицательный, то имеет место обратная связь, если положительный, то – прямая связь.
  4. Если коэффициент корреляции равен нулю, то связь между величинами практически отсутствует.
  5. Чем ближе модуль коэффициента корреляции к единице, тем более сильной является связь между измеряемыми величинами.

3. В каких случаях можно использовать коэффициент Спирмена?

В связи с тем, что коэффициент является методом непараметрического анализа, проверка на нормальность распределения не требуется.

Сопоставляемые показатели могут быть измерены как в непрерывной шкале (например, число эритроцитов в 1 мкл крови), так и в порядковой (например, баллы экспертной оценки от 1 до 5).

Эффективность и качество оценки методом Спирмена снижается, если разница между различными значениями какой-либо из измеряемых величин достаточно велика. Не рекомендуется использовать коэффициент Спирмена, если имеет место неравномерное распределение значений измеряемой величины.

4. Как рассчитать коэффициент Спирмена?

Расчет коэффициента ранговой корреляции Спирмена включает следующие этапы:

  1. Сопоставить каждому из признаков их порядковый номер (ранг) по возрастанию или убыванию.
  2. Определить разности рангов каждой пары сопоставляемых значений (d).
  3. Возвести в квадрат каждую разность и суммировать полученные результаты.
  4. Вычислить коэффициент корреляции рангов по формуле:

Определить статистическую значимость коэффициента при помощи t-критерия, рассчитанного по следующей формуле:

5. Как интерпретировать значение коэффициента Спирмена?

При использовании коэффициента ранговой корреляции условно оценивают тесноту связи между признаками, считая значения коэффициента меньше 0,3 — признаком слабой тесноты связи; значения более 0,3, но менее 0,7 — признаком умеренной тесноты связи, а значения 0,7 и более — признаком высокой тесноты связи.

Также для оценки тесноты связи может использоваться шкала Чеддока:

xy
Теснота (сила) корреляционной связи
менее 0.3
слабая
от 0.3 до 0.5
умеренная
от 0.5 до 0.7
заметная
от 0.7 до 0.9
высокая
более 0.9
весьма высокая

Статистическая значимость полученного коэффициента оценивается при помощи t-критерия Стьюдента. Если расчитанное значение t-критерия меньше табличного при заданном числе степеней свободы, статистическая значимость наблюдаемой взаимосвязи — отсутствует. Если больше, то корреляционная связь считается статистически значимой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector